• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Development of screening system for laxative-free CT colonography using hybrid learning

Research Project

  • PDF
Project/Area Number 21K07578
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionNational Institute of Technology(KOSEN), Oshima College

Principal Investigator

Tachibana Rie  大島商船高等専門学校, 情報工学科, 教授 (90435462)

Project Period (FY) 2021-04-01 – 2024-03-31
KeywordsCTコロノグラフィ / 電子クレンジング / 大腸がん検診 / 深層学習
Outline of Final Research Achievements

In this study, we developed a self-learning GAN-based EC method using 3D images and a recycle-GAN-based EC method using virtual endoscopy images. The final goal was to implement the best EC method by combining the two methods, but the accuracy of the EC method using virtual endoscopy images has not been more effective. Therefore, the final goal could not have been achieved. However, the self-learning GAN-based EC method was able to perform EC with sub-voxel accuracy on a small dataset with no image annotations.

Free Research Field

医用画像処理

Academic Significance and Societal Importance of the Research Achievements

開発した自己学習型GANを用いた電子クレンジング手法は従来法に比べ,自然なクレンジング画像の生成を可能とした.臨床現場における使用が可能となれば,従来に比べCTコロノグラフィ検査による電子クレンジングの精度向上が期待でき,大腸がん検診における被験者の負担を減らす効果及び検診率向上が期待できる.

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi