• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Development of innovative therapeutic assistances from deep learning-based integration of various cardiovascular imaging in coronary artery disease

Research Project

  • PDF
Project/Area Number 21K08044
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 53020:Cardiology-related
Research InstitutionNational Cardiovascular Center Research Institute

Principal Investigator

Asaumi Yasuhide  国立研究開発法人国立循環器病研究センター, 病院, 医長 (20629315)

Co-Investigator(Kenkyū-buntansha) 大塚 文之  国立研究開発法人国立循環器病研究センター, 病院, 医長 (30745378)
西村 邦宏  国立研究開発法人国立循環器病研究センター, 研究所, 部長 (70397834)
野口 暉夫  国立研究開発法人国立循環器病研究センター, 病院, 副院長 (70505099)
Project Period (FY) 2021-04-01 – 2024-03-31
Keywords冠動脈硬化症 / 虚血性心疾患画像診断 / 病理学 / 深層学習法
Outline of Final Research Achievements

(1) We developed a risk stratification technique integrating electrocardiographic findings and clinical information with invasive imaging findings in acute myocardial infarction and coronary artery disease. Predictors of sudden death and prognosis of catheter interventional treatment for complex coronary artery lesions were identified by integrating invasive imaging, electrocardiography, and minimally invasive imaging after acute myocardial infarction. (2) In the research for risk stratification technology development focusing on minimally invasive imaging in coronary artery disease, we developed a method for estimating the occurrence of myocardial ischemia from coronary CT and MRI findings, verified imaging findings and pathology, and developed technology for recognizing high-risk coronary artery plaques using a deep learning method.

Free Research Field

循環器内科学

Academic Significance and Societal Importance of the Research Achievements

虚血性心疾患における各種画像診断を統合させる事は、個別の症例における迅速な病態・予後の推定、その後の適切な介入を可能とする。特に虚血性心疾患では、放射線画像診断を通じた冠動脈解剖情報に基づく層別化が大きな治療の進歩をもたらした。冠動脈解剖学的情報に生理学的情報、分子生物学的情報を統合することにより、より良い層別化技術、個別化技術への発展が期待される。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi