• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Development of algorithm for predicting risk of pulmonary complications after cardiac surgery using artificial intelligence rule extraction technology

Research Project

  • PDF
Project/Area Number 21K09084
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 55060:Emergency medicine-related
Research InstitutionTokyo Women's Medical University

Principal Investigator

Ichiba.shingo Shingo  東京女子医科大学, 医学部, 教授 (30284102)

Co-Investigator(Kenkyū-buntansha) 野村 岳志  東京女子医科大学, 医学部, 教授 (10243445)
林 陽一  明治大学, 理工学部, 専任教授 (20189666)
新浪 博  東京女子医科大学, 医学部, 教授 (30241079)
佐藤 暢夫  聖マリアンナ医科大学, 医学部, 准教授 (80439869)
清野 雄介  東京女子医科大学, 医学部, 准講師 (90366352)
Project Period (FY) 2021-04-01 – 2024-03-31
Keywords人工知能 / 集中治療 / 心臓外科 / アルゴリズム
Outline of Final Research Achievements

Cardiovascular surgery is one of the most invasive surgical procedures requiring ICU admission and, depending on complications, long-term ICU management. A particular risk factor for prolonged ICU stay is the model of pulmonary complications. We hypothesized that early discharge from the ICU would be possible if the risk of these prolonged complications could be estimated in advance. In this study, we investigated the feasibility of creating an algorithm for postoperative complications of cardiovascular surgery using artificial intelligence.

Free Research Field

生体工学

Academic Significance and Societal Importance of the Research Achievements

心臓血管外科のICU長期化リスクを事前に予知することで、真のハイリスク症例を自動で検出するだけでにとどまらず、本研究を実施することでICU入室患者総数を大きく減らすことが可能となり、医師のタスクシフトが可能になると考えた。その結果、1泊10万円を超えるICU入室にかかる社会的負担を減らすことが可能となる。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi