• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Understanding the pathogenesis of idiopathic (unclassified) uveitis through serum microRNA analysis

Research Project

  • PDF
Project/Area Number 21K09682
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 56060:Ophthalmology-related
Research InstitutionKyorin University

Principal Investigator

Keino Hiroshi  杏林大学, 医学部, 教授 (90328211)

Project Period (FY) 2021-04-01 – 2024-03-31
Keywordsぶどう膜炎
Outline of Final Research Achievements

There are some patients showing ocular clinical sings for probable ocular sarcoidosis proposed by the International Workshop on Ocular Sarcoidosis (IWOS) (3 or more out of 7 ocular sings), in whom ancillary testing did not meet the IWOS criteria. Clinical features including visual outcomes were similar between patients with ocular sarcoidosis (OS) and patients with idiopathic uveitis with ocular manifestations of sarcoidosis (suspected OS). We compared the miRNA profile in serum from healthy subjects (HS), patients with ocular sarcoidosis, and patients with suspected ocular sarcoidosis. Clustering analysis showed that serum miRNA profiles of diagnosed ocular sarcoidosis and suspected ocular sarcoidosis were both clearly distinguishable from HS. However, comparative analysis of the miRNA profiles showed highly similar patterns between diagnosed OS and suspected OS. These findings suggest that both groups may share a similar underlying molecular pathology regarding serum miRNA.

Free Research Field

眼科学

Academic Significance and Societal Importance of the Research Achievements

これまで特発性ぶどう膜炎を対象とした報告は少なく、その臨床像は不明な点が多い。本課題では特発性ぶどう膜炎の中でも眼サルコイドーシスに近似した臨床像を呈する患者群(眼サルコイドーシス疑い群)が存在すること、近年疾患バイオマーカーとして注目されているmicroRNAに注目し血清中の発現プロファイルを眼サルコイドーシス群と眼サルコイドーシス疑い群で機械学習の手法を用いてプロファイルを比較したところ両群間で近似した発現パターンを示すことを報告した。本課題で得られた結果を基に特発性ぶどう膜炎の疾患分類と病態理解が進展することで、視機能予後の改善に繋がることが期待される。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi