• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Metadata profiles based usability and accessibility enhancements for LOD datasets

Research Project

  • PDF
Project/Area Number 21K12579
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 90020:Library and information science, humanistic and social informatics-related
Research InstitutionUniversity of Tsukuba

Principal Investigator

Nagamori Mitsuharu  筑波大学, 図書館情報メディア系, 講師 (60272209)

Project Period (FY) 2021-04-01 – 2024-03-31
Keywordsメタデータ / メタデータスキーマ / セマンティックWeb / Linked Open Data
Outline of Final Research Achievements

Metadata creators are experts in their domain and may not have experience or knowledge of metadata schema design, and it is difficult to combine metadata terms such as properties and classes defined in metadata vocabulary definitions appropriately in LOD datasets simply by referring to those vocabulary definitions. It is difficult to adequately combine and structure metadata terms such as properties and classes defined in these vocabularies in an LOD dataset. Therefore, in order to increase the use of LOD datasets, this study considers it necessary to support the selection of appropriate metadata terms and the design of highly usable metadata models, and has set the following two research objectives
1) To propose a domain-specific metadata term selection support model.
2) To propose a metadata model evaluation support model based on the FAIR principle.

Free Research Field

情報科学

Academic Significance and Societal Importance of the Research Achievements

LODデータセットの作成では,コミュニティの目的に特化した独自のメタデータ語彙に加えて,既存のメタデータ語彙を組み合わせて利用している.しかしながら,LODデータセットのドメインに適切なメタデータ記述項目を表現するための適切なプロパティやクラスといったメタデータタームの選択と,それらメタデータタームを組み合わせてメタデータ記述のための制約を与えた構造の作成は,作成者の知識や経験に依るところが大きい.本研究では,LODデータセットの利活用性向上を目的として,ドメインに適切なメタデータターム選択手法とメタデータモデルの評価手法を明らかにし,そのための支援環境の構築をおこなった.

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi