2023 Fiscal Year Final Research Report
Study on an intelligent sensing system for fine-grained data of urban garbage discharge
Project/Area Number |
21K17735
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 60060:Information network-related
|
Research Institution | Reitaku University (2022-2023) Keio University (2021) |
Principal Investigator |
Yin Chen 麗澤大学, 工学部, 准教授 (60773124)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Keywords | 情報ネットワーク |
Outline of Final Research Achievements |
This research and development project aimed to create an efficient system for collecting and analyzing waste discharge data in towns using garbage trucks. Specifically, we accomplished the following: 1)Developed an algorithm to automatically count garbage bags using a device with a GPU that can be mounted on garbage trucks. 2) Deployed these devices in multiple municipalities to verify the system's effectiveness. 3) Built a platform for analyzing collected data, including forecasting waste discharge and creating collection maps. 4)Published academic papers and advanced the practical implementation in several municipalities. Through this, we established a new system to improve the efficiency of waste management in towns.
|
Free Research Field |
情報ネットワーク
|
Academic Significance and Societal Importance of the Research Achievements |
学術研究について、本研究は車の移動力、データとそれに設置したエッジデバイスを活かした高次元の生データ処理を実践したセンシングシステムの日本初の研究開発であり、関連分野の研究開発を大きく推進したと言える。 社会的意義としては、本研究開発は日本の都市部における排出量をより精度高く、かつより精緻に把握可能となり、地方自治体のエビデンスベースのごみ排出管理行政業務を大きく推進させる。又、得られたごみ排出量データは都市計画、廃棄物処理などの関連分野に学術的・実用的価値の高いデータを提供でき、その分野の発展ににつながる。
|