2022 Fiscal Year Final Research Report
Existence problems in Hopf-Galois structures and skew braces
Project/Area Number |
21K20319
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0201:Algebra, geometry, analysis, applied mathematics,and related fields
|
Research Institution | Ochanomizu University |
Principal Investigator |
TSANG SINYI (TSANGCINDY) お茶の水女子大学, 基幹研究院, 助教 (10908271)
|
Project Period (FY) |
2021-08-30 – 2023-03-31
|
Keywords | holomorph / 正則部分群 / ホップ・ガロア構造 / skew brace / 有限単純群 / p-groups of class two / multiple holomorph |
Outline of Final Research Achievements |
For any finite groups G and N of the same order, let us say that (G,N) is realizable when the holomorph of N contains a regular subgroup isomorphic to G. In this research, for any cyclic group G, we were able to determine the groups N for which (G,N) is realizable. Moreover, we were able to determine the simple groups N for which there exists a solvable group G such that (G,N) is realizable. As a related problem, we also studied the so-called multiple holomorph of some p-groups of class two.
|
Free Research Field |
群論
|
Academic Significance and Societal Importance of the Research Achievements |
同位数をもつ有限群GとNに対して,(G,N)がrealizableであることは,ガロア群Gをもつ拡大にタイプNのホップ・ガロア構造が存在すること,及び加法群がNで乗法群がGとなるようなskew braceが存在することと同値である.前者は整数環のガロア加群構造の研究に応用があり,後者はYang-Baxter方程式の集合理論的解と関連していることが知られている.よって,(G,N)がrealizableか否かは重要な問題であり,本研究の成果はこのrealizabilityに関する研究を進展させた.
|