• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Study of dynamical systems of random relaxed Newton methods

Research Project

  • PDF
Project/Area Number 21K20323
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0201:Algebra, geometry, analysis, applied mathematics,and related fields
Research InstitutionKyoto University

Principal Investigator

Watanabe Takayuki  京都大学, 理学研究科, 特定研究員 (50913282)

Project Period (FY) 2021-08-30 – 2023-03-31
Keywordsランダム力学系 / ニュートン法 / ランダムアルゴリズム / 複素解析
Outline of Final Research Achievements

The PI implemented the random relaxed Newton methods and made several mathematical predictions through numerical experiments. For example, it was known that the root-finding algorithm worked well when the noise was sufficiently large, but for some examples, the random algorithm worked well even with very small noise. The PI also found numerically that the size of noise required for the algorithm is closely related to the parameter at which the family of the deterministic relaxed Newton maps bifurcates. The PI expects that mathematical proof of this conjecture will lead to the development of better algorithms.

Free Research Field

ランダム力学系理論

Academic Significance and Societal Importance of the Research Achievements

工学を含むあらゆる数理的な課題の中で,与えられた関数の零点(根)を求めることはとても基本的で重要な問題です.本研究は,有名な求根アルゴリズムであるニュートン法にあえてノイズを入れることでアルゴリズムを改善できるか,という着想に基づいています.得られた成果として,ランダム力学系の確率分岐は決定論的な分岐よりも早く起こるだろう,という数学的にも実用上も重要な予想を発見するに至りました.これは,力学系理論の研究を新しい観点から開拓するという学術的な意義があります.また,実社会に対しても,(ランダム)求根アルゴリズムの改善を通して大きな影響を与えられる可能性を秘めています.

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi