• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2014 Fiscal Year Final Research Report

Lattices, automorphic forms, and moduli spaces

Research Project

  • PDF
Project/Area Number 22224001
Research Category

Grant-in-Aid for Scientific Research (S)

Allocation TypeSingle-year Grants
Research Field Algebra
Research InstitutionNagoya University

Principal Investigator

KONDO Shigeyuki  名古屋大学, 多元数理科学研究科, 教授 (50186847)

Co-Investigator(Kenkyū-buntansha) EGUCHI Toru  立教大学, 理学研究科, 教授 (20151970)
ITO Yukari  名古屋大学, 大学院多元数理科学研究科, 准教授 (70285089)
IYAMA Osamu  名古屋大学, 大学院多元数理科学研究科, 教授 (70347532)
MA Shohei  東京工業大学, 理学研究科, 准教授 (80633255)
KANNO Hiroaki  名古屋大学, 大学院多元数理科学研究科, 教授 (90211870)
NAGAO Kentaro  (元)名古屋大学, 大学院多元数理科学研究科, 助教 (10585574)
Co-Investigator(Renkei-kenkyūsha) MUKAI Shigeru  京都大学, 数理解析研究所, 教授 (80115641)
SHIMADA Ichiro  広島大学, 理学研究科, 教授 (10235616)
OGISO Keiji  大阪大学, 理学研究科, 教授 (40224133)
YOSHIKAWA Kenichi  京都大学, 理学研究科, 教授 (20242810)
MIYAMOTO Masahiko  筑波大学, 理学研究科, 教授 (30125356)
Project Period (FY) 2010-04-01 – 2015-03-31
Keywords格子 / 保型形式 / モジュライ / K3 曲面 / エンリケス曲面 / マシュームーンシャイン / 自己同型
Outline of Final Research Achievements

The main problem of algebraic geometry is to study structures and symmetries of algebraic varieties and their moduli spaces. A K3 surface is a 2-dimensional analogue of an elliptic curve, which was found in the 19th century. Now K3 surfaces are interesting to Mathematics and theoretical Physics. In this research project we have obtained several results of the structure of moduli spaces of K3 surfaces and automorphisms of K3 surfaces. On the other hand, there is a mysterious connection, called Mathieu moonshine, between symmetries of K3 surfaces and the Mathieu group, a sporadic finite simple group. We have some results concerning this phenomenon.

Free Research Field

数学,代数学,代数幾何学

URL: 

Published: 2016-06-03  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi