• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2012 Fiscal Year Final Research Report

Geometry of affine spheres and projectivelyminimal surfaces

Research Project

  • PDF
Project/Area Number 22540083
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKobe University

Principal Investigator

SASAKI Takeshi  神戸大学, 自然科学系先端融合研究環重点研究部, 名誉教授 (00022682)

Project Period (FY) 2010 – 2012
Keywordsアフィン球面 / 射影極小曲面 / 中心アフィン曲面 / 超幾何微分方程式系 / 曲面の変換 / 離散的曲面論 / 線叢
Research Abstract

While affine spheres are classically known to be projectively minimal, projectively minimal surfaces make a very large class.To find intermediate classes between affine spheres and projectively minimal surfaces is the problem considered here. We characterized the condition for centroaffinely minimal surfaces to be projectively minimal and the form of the associated system of differential equations; we gave a procedure of how to construct Marcus transformations of coincidence surfaces and centroaffinely minimal surfaces of codimension two. Relatedresults include a study of reducibility of the monodromy group of certain hypergeometric systems of differential equations, an application of the affine volume to mathematical statistics, and a construction of discrete surfaces.

  • Research Products

    (7 results)

All 2012 2011 Other

All Journal Article (6 results) (of which Peer Reviewed: 6 results) Remarks (1 results)

  • [Journal Article] Monodromy representations associated with the Gauss hypergeometric function using integrals of a multivalued function2012

    • Author(s)
      K. Mimachi and T. Sasaki
    • Journal Title

      Kyushu J. of Math

      Volume: 66 Pages: 35-60

    • URL

      https://www.jstage.jst.go.jp/article/kyushujm/66/1/66_35/_pdf

    • Peer Reviewed
  • [Journal Article] Irreducibili- ty and reducibility of Lauricella's system of differential equations and the Jordan-Pochhammer differential equation2012

    • Author(s)
      K. Mimachi and T. Sasaki
    • Journal Title

      Kyushu J. Math

      Volume: 66 Pages: 61-87

    • URL

      https://www.jstage.jst.go.jp/article/kyushujm/66/1/66_61/_pdf

    • Peer Reviewed
  • [Journal Article] Monodromy representations associated with Appell's hypergeometric function F1 using integrals of a multi valued function2012

    • Author(s)
      K. Mimachi and T. Sasaki
    • Journal Title

      Kyushu J. Math

      Volume: 66 Pages: 89-114

    • URL

      https://www.jstage.jst.go.jp/article/kyushujm/66/1/66_89/_pdf

    • Peer Reviewed
  • [Journal Article] Discrete flat surfaces and linear Weingarten surfaces in hyperbolic 3-space2012

    • Author(s)
      T. Hoffmann, W. Rossman, T. Sasaki, and M. Yoshida
    • Journal Title

      Trans. Amer. Math. Soc

      Volume: 364 Pages: 5605-5644

    • URL

      http://www.ams.org/journals/tran/2012-364-11/S0002-9947-2012-05698-4/S0002-9947-2012-05698-4.pdf

    • Peer Reviewed
  • [Journal Article] Tests of inequivalence among absolutely nonsingular tensors through geometric invariants, Univ. Journal of Math. and Mathematical Sciences2012

    • Author(s)
      T. Sakata, K. Maehara, T. Sasaki, T. Sumi, M. Miyazaki,Y. Watanabe, and M. Tagami
    • Journal Title

      Pushpa Publ. House, India

      Volume: 1 Pages: 1-28

    • URL

      http://www.pphmj.com/abstract/6327.htm

    • Peer Reviewed
  • [Journal Article] The hyper- geometric differential equation with cubic curves as Schwarz images2011

    • Author(s)
      M.Kato and T. Sasaki
    • Journal Title

      Kyushu J. Math

      Volume: 65 Pages: 55-74

    • URL

      https://www.jstage.jst.go.jp/article/kyushujm/65/1/65_1_55/_pdf

    • Peer Reviewed
  • [Remarks] ホームページ

    • URL

      http://www.math.kobe-u.ac.jp/~sasaki

URL: 

Published: 2014-08-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi