• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2012 Fiscal Year Final Research Report

Extensions of reflecting Markov processes on unbounded domains

Research Project

  • PDF
Project/Area Number 22540125
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionOsaka University

Principal Investigator

FUKUSHIMA Masatoshi  大阪大学, その他部局等, 名誉教授 (90015503)

Project Period (FY) 2010 – 2012
Keywords無限錐 / 反射壁ブラウン運動 / 多重連結領域 / 小松・レブナー微分方程式 / かがりブラウン運動 / SKLE / 1次元極小拡散過程 / 対称性 / 対称拡散拡張
Research Abstract

1. The time changed reflecting Brownian motion on a 3-space consisting of two infinite cones is shown to admit 4 and only 4 possible symmetric Markovian extensions.
2. The Komatu-Loewner differential equation for a multiply connected planar domain is derived by the Brownian motion with darning (BMD). The notion of stochastic Loewner evolution (SLE) for simply connected domains is extended to multiply connected domains as stochastic Komatu-Loewner evolution (SKLE).
3. The minimal diffusion on an interval is shown to be symmetric for the canonical measure and all its symmetric diffusion extensions are identified in relation to Ito-McKean’ s theory. As a result, the one-dimensional diffusions with general boundary conditions can be directly constructed by means of regular Dirichlet forms.

  • Research Products

    (9 results)

All 2013 2012 2011 2010

All Journal Article (4 results) (of which Peer Reviewed: 4 results) Presentation (3 results) Book (2 results)

  • [Journal Article] On general boundary conditions for one-dimensional diffusions with symmetry2013

    • Author(s)
      M. Fukushima
    • Journal Title

      Journal of Mathematical Society of Japan

    • Peer Reviewed
  • [Journal Article] A localization formula in Dirichlet form theory2012

    • Author(s)
      Z.-Q. Chen, M. Fukushima
    • Journal Title

      Proceedings of the AmericanMathematical Society

      Volume: 140 Pages: 1815-1822

    • Peer Reviewed
  • [Journal Article] Jump-type Hunt processes generated by lower bounded semi-Dirichlet forms2012

    • Author(s)
      M. Fukushima, T. Uemura
    • Journal Title

      The Annals of Probability

      Volume: 40 Pages: 858-889

    • Peer Reviewed
  • [Journal Article] From one dimensional diffusions to symmetric Markov processes2010

    • Author(s)
      M. Fukushima
    • Journal Title

      Stochastic Processes and their Applications

      Volume: 120 Pages: 590-604

    • Peer Reviewed
  • [Presentation] Brownian motion with darning applied to KL and BF equations for planar slit domains,Stochastic Analysis and Applications2012

    • Author(s)
      福島 正俊
    • Organizer
      German-Japanese bilateral project
    • Place of Presentation
      岡山大学
    • Year and Date
      2012-09-26
  • [Presentation] On Brownian motion with darning and Komatu-Loewner equation for multiply connected planar domains2011

    • Author(s)
      福島 正俊
    • Organizer
      Foundation of Stochastic Analysis
    • Place of Presentation
      Banff, Canada
    • Year and Date
      2011-09-20
  • [Presentation] Jump-type Hunt processesgenerated by lower bounded semi-Dirichlet forms2010

    • Author(s)
      福島 正俊
    • Organizer
      4-th International Conference on Stochastic Analysis and Its Applications
    • Place of Presentation
      関西大学
    • Year and Date
      2010-08-30
  • [Book] Symmetric Markov Processes, Time Change, and Boundary Theory2012

    • Author(s)
      Z.-Q. Chen, M. Fukushima
    • Total Pages
      1-479
    • Publisher
      Princeton University Press
  • [Book] Dirichlet Forms and Symmetric Markov Processes, 2-ndrevised and extended edition2010

    • Author(s)
      M. Fukushima, Y. Oshima, M. Takeda
    • Total Pages
      1-489
    • Publisher
      De Gruyter

URL: 

Published: 2014-08-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi