• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2012 Fiscal Year Final Research Report

Development of Inverse problems via asymptotic analysis -from the point of view of scattering theory

Research Project

  • PDF
Project/Area Number 22540194
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionHiroshima University

Principal Investigator

KAWASHITA Mishio  広島大学, 大学院・理学研究科, 教授 (80214633)

Co-Investigator(Renkei-kenkyūsha) IKEHATA Masaru  群馬大学, 大学院・工学研究科, 教授 (90202910)
Project Period (FY) 2010 – 2012
Keywords函数方程式 / 境界値逆問題 / 熱方程式 / 囲い込み法 / 散乱逆問題
Research Abstract

The theme of this research is to analyze inverse boundary value problems for the heat equations by “enclosure method”. In the case that infinitely many measurements can be used, the expected results are obtained. In the case of one measurement, it is found that there are two different formulations. One is given by using similar thought to the case of infinitely many measurements. The other comes from a completely different idea. The latter one is much harder problem than former one. Even for the former problem, it is found that the distance between the boundary of the cavities or inclusions and the outside boundary is detected. Note that this amount is first caught in the setting of “enclosure method”. From the proofs of these results, it is clarified that “the length from the outside boundary to the point hitting inside boundary first” is detected.

  • Research Products

    (10 results)

All 2013 2012 2011 2010 Other

All Journal Article (4 results) (of which Peer Reviewed: 4 results) Presentation (6 results)

  • [Journal Article] Local energy decay for wave equations in exterior domains with regular or fast decaying dissipations2011

    • Author(s)
      M. Kawashita and K. Suzuki
    • Journal Title

      SUT Journal of Mathematics

      Volume: 47 Pages: 143-159

    • Peer Reviewed
  • [Journal Article] Weighted energy estimates for wave equations in exterior domains2011

    • Author(s)
      M. Kawashita and H. Sugimoto
    • Journal Title

      Forum Math

      Volume: 23 Pages: 1217-1258

    • Peer Reviewed
  • [Journal Article] On the reconstruction of inclusions in a heat conductive body from dynamical boundary data over a finite time interval2010

    • Author(s)
      M. Ikehata and M. Kawashita
    • Journal Title

      Inverse Problems

      Volume: 26

    • Peer Reviewed
  • [Journal Article] Estimates of the integral kernels arising inverse problems for a three-dimensional heat equation in thermal imaging

    • Author(s)
      M. Ikehata and M. Kawashita
    • Journal Title

      Kyoto Journal of Mathematics

    • Peer Reviewed
  • [Presentation] Energy decay properties for dissipative wave equations in exterior domains2013

    • Author(s)
      川下美潮
    • Organizer
      非線形波動方程式とその周辺に関する研究集会
    • Place of Presentation
      北海道大学
    • Year and Date
      2013-02-02
  • [Presentation] Enclosure methods for the heat equations2012

    • Author(s)
      川下美潮
    • Organizer
      TAIWAN-JAPAN Joint Conference on PDE and Analysis
    • Place of Presentation
      國立臺灣大學 數學系 臺灣
    • Year and Date
      2012-12-27
  • [Presentation] Estimates of the integral kernels for the boundary integral operators2012

    • Author(s)
      川下美潮
    • Organizer
      偏微分方程式の逆問題解析とその周辺に関する研究
    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      2012-11-21
  • [Presentation] 熱方程式に対する囲い込み法とレゾルベントの漸近挙動2012

    • Author(s)
      川下美潮
    • Organizer
      2012年日本数学会年会函数方程式論分科会特別講演
    • Place of Presentation
      東京理科大学
    • Year and Date
      2012-03-28
  • [Presentation] The enclosure method for the heat equations in bounded domains with cavities2012

    • Author(s)
      川下美潮
    • Organizer
      武漢大学学術報告
    • Place of Presentation
      中華人民共和国武漢大学数学統計学院
    • Year and Date
      2012-03-09
  • [Presentation] Asymptotic behaviour of the resolvent and enclosure method for the heat equations in bounded domains with a cavity2011

    • Author(s)
      川下美潮
    • Organizer
      幾何学的偏微分方程式における保存則と 正則性特異性の研究
    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      2011-06-08

URL: 

Published: 2014-08-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi