• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2012 Fiscal Year Final Research Report

Development of spin geometry with the Rarita-Schwinger operators

Research Project

  • PDF
Project/Area Number 22740047
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeSingle-year Grants
Research Field Geometry
Research InstitutionWaseda University

Principal Investigator

HOMMA Yasushi  早稲田大学, 理工学術院, 教授 (50329108)

Project Period (FY) 2010 – 2012
Keywords微分幾何学 / スピン幾何学 / ディラック作用素 / ラリタ・シュインガー作用素
Research Abstract

The Dirac operators and spinors are important geometrical tools to investigate differential manifolds. Such a filed in mathematics is called “spin geometry”. The purpose of this project is that we develop spin geometry with the Rarita-Schwinger operators instead of the Dirac operators. We have the following results:
(1) Some properties of spectra of the Rarita-Schwinger operator on the 3-dimHeisenberg manifold.
(2) Eta-functions and their special values for the Dirac operators on some 3-dimmanifolds (by joint work).
Besides, we found some ideas to develop spin geometry with the Rarita-Schwingeroperators.

  • Research Products

    (5 results)

All 2012 2010 Other

All Presentation (2 results) Remarks (3 results)

  • [Presentation] ディラック作用素などの幾何学的一階微分作用素の話2012

    • Author(s)
      本間泰史
    • Organizer
      関東若手幾何セミナー
    • Place of Presentation
      首都大学東京
    • Year and Date
      2012-12-20
  • [Presentation] The Rarita-Schwinger operator (spin 3/2 Dirac operator)について2010

    • Author(s)
      本間泰史
    • Organizer
      幾何学阿蘇研究集会
    • Place of Presentation
      休暇村南阿蘇
    • Year and Date
      2010-08-31
  • [Remarks] 研究集会「非可換幾何と数理物理2012」慶応大学2012年9月14、15日

  • [Remarks] 研究集会「量子化の幾何学2011」早稲田大学2011年11月18、19日

  • [Remarks] 研究集会「非可換幾何と数理物理2010」慶応大学2010年7月1、2日.

URL: 

Published: 2014-08-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi