2023 Fiscal Year Final Research Report
Development of a Simple and Scalable Method for Organic Semiconductor Single Crystal Growth and Formation of Multi-Single Crystal Thin Films for Applications in Field-Effect Transistor-Based Devices.
Project/Area Number |
22K14293
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 21050:Electric and electronic materials-related
|
Research Institution | Institute of Physical and Chemical Research |
Principal Investigator |
Bulgarevich Kirill 国立研究開発法人理化学研究所, 創発物性科学研究センター, 特別研究員 (60880268)
|
Project Period (FY) |
2022-04-01 – 2024-03-31
|
Keywords | 有機半導体 / 有機トランジスタ / 単結晶 / 薄膜 / 多単結晶膜 / 大面積 / 間接昇華法 |
Outline of Final Research Achievements |
We developed a novel crystal growth technique named "indirect sublimation", and successfully formed organic semiconductor single-crystals on large-area without the use of vacuum or solvents. These numerous freestanding single-crystals were transferred onto device substrates through a simple press-transfer and rubbing process, creating a so-called "multi-single-crystal (MSC)" film, where small crystals overlap to cover large areas. We confirmed that organic field-effect transistors (OFETs) using this MSC film as the active layer perform similarly to single-crystal devices. By combining such OFETs, we successfully fabricated pseudo-CMOS devices that exhibit inverter characteristics similar to CMOS devices. Furthermore, using our unique crystal structure simulation algorithm, we successfully developed a novel ultra-high mobility organic semiconductor material, which also has potential for MSC film applications.
|
Free Research Field |
有機半導体
|
Academic Significance and Societal Importance of the Research Achievements |
新たに開発された「間接昇華法」および「多単結晶膜」形成は真空や溶媒を用いずに有機半導体の大面積な結晶性薄膜を形成する手法である。特に我々が最近報告した有機半導体MT-ピレンは多単結晶膜トランジスタで(>15 cm2 V-1 s-1)の非常に高い移動度を示し、この技術により環境への影響を抑えた高性能な有機デバイスの実現が期待される。さらに、我々が独自で開発した結晶構造シミュレーションアルゴリズムを使用することでMT-ピレンと同等な移動度を示す新規材料が開発された。この手法は多単結晶膜応用を念頭に置いた溶解性にとらわれない材料設計と構造シミュレーションによる効率的な高移動度新規材料開発につながる。
|