2023 Fiscal Year Final Research Report
Spectral analysis of geospatial relationship data of tourism flows by coarse-graining and connectivity reconstruction
Project/Area Number |
22K18502
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 4:Geography, cultural anthropology, folklore, and related fields
|
Research Institution | Kanazawa University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
川澄 厚志 金沢大学, 融合科学系, 准教授 (00553794)
小林 俊一 金沢大学, 地球社会基盤学系, 准教授 (10243065)
丸谷 耕太 金沢大学, 融合科学系, 准教授 (50749356)
|
Project Period (FY) |
2022-06-30 – 2024-03-31
|
Keywords | 観光流動 / スペクトル解析 |
Outline of Final Research Achievements |
Using the flow data from the survey of National Pure Flow Investigation of Trunk Line Passengers, a matrix of flow volumes was created and spectral analysis was conducted in order to capture the macroscopic aspects of tourist movement. Focusing on the second smallest eigenvalue and the second smallest eigenvector of the spectral analysis results, we discussed the linkage among regions. Through these studies, we confirmed that there is a validity in the method of analyzing regional linkages using the second smallest eigenvalue and the second smallest eigenvector obtained by creating a matrix of flow data, converting it to a Laplacian matrix, and performing a spectral analysis of the matrix. Furthermore, the possibility of decomposing the matrix was discussed.
|
Free Research Field |
未来社会デザイン
|
Academic Significance and Societal Importance of the Research Achievements |
移動という人間行動をマクロ的に捉えた観光流動をデータに基づいて解明しようとすることは極めて文理融合・学際的で非常に意義深い.観光流動やつながりを全てデータで解明できるとは限らないが,データで説明できることを明確にすることはそれらの質的分析を行う上でも非常に意義深い.社会的にも,観光は重要産業の一つであり,観光客がどこからどこへ移動するのかを把握することは重要であり,地域間の観光客の移動の関係性を明らかにすることに資するものである.
|