2015 Fiscal Year Final Research Report
Geometric group theory and metric embedding
Project/Area Number |
23244005
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | Kyoto University (2012-2015) Tohoku University (2011) |
Principal Investigator |
Fujiwara Koji 京都大学, 理学(系)研究科(研究院), 教授 (60229078)
|
Co-Investigator(Kenkyū-buntansha) |
OZAWA Narutaka 京都大学, 数理解析研究所, 教授 (60323466)
SHIOYA Takashi 東北大学, 理学(系)研究科(研究院), 教授 (90235507)
KAWAZUMI Nariya 東京大学, 数理(科)学研究科(研究院), 准教授 (30214646)
AKUTAGAWA Kazuo 東北大学, 大学院・情報科学研究科, 教授 (80192920)
|
Project Period (FY) |
2011-04-01 – 2016-03-31
|
Keywords | 幾何学的群論 / 双曲群 / 写像類群 / 作用素環論 / アレクサンドロフ空間 / 擬準同型 |
Outline of Final Research Achievements |
Fujiwara found a new method to embed certain discrete groups into a finite product of hyperbolic graphs in his joint work with Bestvina and Bromberg, and obtained important applications. Ozawa made a significant progress on the study of C*-algebra of discrete amenable groups, and also quasi-homomorphisms into non-commutative groups. Shioya found an important result on the asymptotics of the first eigen value of Laplacians on Alexandrov spaces.
|
Free Research Field |
幾何学
|