• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2015 Fiscal Year Final Research Report

Motivic cohomology over discrete valuation rings

Research Project

  • PDF
Project/Area Number 23340004
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionRikkyo University (2015)
Nagoya University

Principal Investigator

Geisser Thomas  立教大学, 理学部, 教授 (30571963)

Co-Investigator(Renkei-kenkyūsha) Hesselholt Lars  名古屋大, 多元数理科学研究科, 教授 (10436991)
Saito Shuji  東京工業大学, 学部, 教授 (50153804)
Sato Kanetomo  中央大学, 理工学部数学科, 教授 (50324398)
Asakura Masanori  北海道大学, 理学院数学専攻, 教授 (60322286)
Project Period (FY) 2011-04-01 – 2016-03-31
Keywordsモチビック・コホモロジー / ススリンホモロジー / スキームの類対論
Outline of Final Research Achievements

Arithmetic geometry is the study of integral or rational solutions of systems of polynomial equations. For this, it is often useful to study the solutions in other domains, like complex number, real numbers, finite fields, or p-adic fields. An important invariant of such solution sets are motivic cohomology, higher Chow groups, and Suslin homology. During this project, I studied these invariants, and proved several interesting results about them.

Free Research Field

数論幾何学

URL: 

Published: 2017-05-10  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi