• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2015 Fiscal Year Final Research Report

Theory of mixed log Hodge structures and its applications

Research Project

  • PDF
Project/Area Number 23340008
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionOsaka University

Principal Investigator

USUI Sampei  大阪大学, その他部局等, 名誉教授 (90117002)

Co-Investigator(Kenkyū-buntansha) NAKAYAMA Chikara  一橋大学, 大学院経済学研究科, 教授 (70272664)
KONNO Kazuhiro  大阪大学, 大学院理学研究科, 教授 (10186869)
ASHIKAGA Tadashi  東北学院大学, 工学部, 教授 (90125203)
FUJIKI Akira  大阪大学, その他部局等, 名誉教授 (80027383)
OGUISO Keiji  東京大学, 大学院数理科学研究科, 教授 (40224133)
TAKAHASHI Atsushi  大阪大学, 大学院理学研究科, 教授 (50314290)
OHNO Koji  大阪大学, 大学院理学研究科, 助教 (20252570)
WATANABE Kenta  大阪大学, 理学(系)研究科(研究院), 研究員 (70582683)
Co-Investigator(Renkei-kenkyūsha) KATO Kazuya  シカゴ大学, 教授 (90111450)
Project Period (FY) 2011-04-01 – 2016-03-31
Keywordsホッジ理論 / 周期写像 / モジュライ / コンパクト化 / 混合対数的ホッジ構造 / 混合版基本図式 / ネロンモデル / ミラー対称性
Outline of Final Research Achievements

In mixed case, we constructed spaces of SL(2)-orbits, fine moduli of log mixed Hodge structures. As geometric applications, we constructed Neron models and showed analyticity of the common zeros of sections of the Neron model. We also constructed a Neron model which accepts any given admissible normal function. As applications of these results to physics, we describe closed and open mirror symmetry for quantic 3-folds. All of these results are published.
In mixed case, supplementing spaces of nilpotent i-orbits with ratio structure and spaces of SL(2)-orbit with star, we completed an amplified fundamental diagram by which various limits of period maps and normal functions are compared. These results are submitted and available from arXiv.

Free Research Field

数理系科学

URL: 

Published: 2017-05-10  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi