• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2015 Fiscal Year Final Research Report

Development of Integrable Geometry

Research Project

  • PDF
Project/Area Number 23340012
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionTohoku University

Principal Investigator

Miyaoka Reiko  東北大学, 理学(系)研究科(研究院), 教授 (70108182)

Co-Investigator(Renkei-kenkyūsha) KOTANI Motoko  東北大学, 大学院理学研究科, 教授 (50230024)
NISHINOU Takeo  立教大学, 理学部, 教授 (50420394)
UEHARA Taketo  佐賀大学, 大学院工学系研究科, 准教授 (40613261)
MATSUURA Nozomu  福岡大学, 理学部, 助教 (00389339)
IWASAKI Katsunori  北大, 大学院理学研究科, 教授 (00176538)
IRITANI Hiroshi  京大, 大学院理学研究科, 准教授 (20448400)
KAJIWARA Kenji  九大, マスフォアインダストリ, 教授 (40268115)
NAGATOMO Yasuyuki  明治大学, 理工学部, 教授 (10266075)
NOMURA Takaaki  九大, 大学院理学研究科, 教授 (30135511)
YAMADA Kotaro  東工大, 大学院理学研究科, 教授 (10221657)
ISHIKAWA Goo  北大, 大学院理学研究科, 教授 (50176161)
UMEHARA Masaaki  東工大, 大学院情報理工学研究科, 教授 (90193945)
GUEST Martin  早大, 大学院基幹理工学研究科, 教授 (10295470)
SHODA Toshihiro  佐賀大, 教育学部, 准教授 (10432957)
FUTAKI Akito  東大, 大学院数理科学研究科, 教授 (90143247)
FUJIOKA Atsushi  関西大学, システム理工学部, 教授 (30293335)
RASSMAN Wayne  神戸大学, 大学院理学研究科, 教授 (50284485)
TAMARU Hiroshi  広島大学, 大学院理学研究科, 教授 (50306982)
Project Period (FY) 2011-04-01 – 2015-03-31
Keywords極小ラグランジュ部分多様体 / L2調和形式 / 共形型 / 等径超曲面 / ガウス写像 / ハミルトン変形 / 交叉数 / フレアホモロジー
Outline of Final Research Achievements

Isoparametric hypersurfaces with 6 principal curvatures with multiplicity 2 are shown to be homogeneous, which solves one of Yau's problems. As for 4 principal curvature case, we gave a description by using the moment map of spin actions. Transnormal systems are investigated in details.
We show the non-existence of L2 harmonic 1-form on a complete non-compact stable minimal Lagrangian submanifolds in a Kaheler manifold with positive Ricci curvature. Then the number of non-parabolic ends is less than two, and in the surface case, the genus should vanish. The Floer theory on the intersection of a Lagrangian submanifold with its Hamiltonian deformation is investigated. The Gauss images of isoparametric hypersurfaces in the sphere are Lagrangian submanifolds of complex hyperquadric, and in this case, we show that if the multiplicities of the principal curvatures are bigger than 1, then they are Hamiltonian non-displaceable,

Free Research Field

微分幾何学

URL: 

Published: 2017-05-10   Modified: 2017-05-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi