2016 Fiscal Year Final Research Report
Non-commutative crepant resolution, Orbifold cohomology and generalization of the McKay correspondence
Project/Area Number |
23540045
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Nagoya University |
Principal Investigator |
Ito Yukari 名古屋大学, 多元数理科学研究科, 准教授 (70285089)
|
Co-Investigator(Renkei-kenkyūsha) |
ISHII Akira 広島大学, 大学院理学研究科, 教授 (10252420)
YOSHIDA Ken-ichi 日本大学, 文理学部, 教授 (80240802)
YASUDA Takehiko 大阪大学, 大学院理学研究科, 准教授 (30507166)
|
Research Collaborator |
CRAW Alastair バース大学, 助教授
WEMYSS Michael グラスゴー大学, 教授
|
Project Period (FY) |
2011-04-28 – 2017-03-31
|
Keywords | 商特異点 / 特異点解消 / マッカイ対応 / 非可換クレパント解消 / クイバーの表現 |
Outline of Final Research Achievements |
Our main aim is to find crepant resolution for quotient singularity and see the McKay correspondence. We have to check the existence of a crepant resolution by construction of a crepant resolution or existenxe of non-commutative crepant resolution. The later one is relatively new idea.The MaKay correspondence is a relation between crepant resolution and group representation.During this research, we found a way to construct a crepant resolution as a moduli space of corresponding representation. Moreover, we showed a generalized McKay correspondence in dimension three as a generalization of special McKay correspondence by using non-commutative corepant resolutions,
|
Free Research Field |
代数幾何学
|