• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2013 Fiscal Year Final Research Report

Hyperbolic operators with double characteristics, Hamilton map and Hamilton flow

Research Project

  • PDF
Project/Area Number 23540199
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionOsaka University

Principal Investigator

NISHITANI Tatsuo  大阪大学, 理学(系)研究科(研究院), 教授 (80127117)

Project Period (FY) 2011 – 2013
Keywordshyperbolic operator / Cauchy problem / Hamilton map / bicharacteristic / well-posedness / effectively hyperbolic / Hamilton flow
Research Abstract

Much progress has been achieved on the well-posedness of the Cauchy problem for linear hyperbolic operators with double characteristics. In particular in several transition cases from effectively hyperbolic to noneffectively hyperbolic, the relations between the spectral properties of the Hamilton map and the well-posedness conditions are clarified. I have published many such obtained results and also presented such results in several international meetings.

  • Research Products

    (15 results)

All 2014 2013 2012 2011

All Journal Article (7 results) (of which Peer Reviewed: 7 results) Presentation (6 results) Book (2 results)

  • [Journal Article] On the Cauchy problem for hyperbolic operators with double characteristics, a transition case2014

    • Author(s)
      T.Nishitani
    • Journal Title

      Fourier Analysis, Trends in Mathematics

      Pages: 311-334

    • Peer Reviewed
  • [Journal Article] On the Cauchy problem for non effectively hyperbolic operators, a transition case2013

    • Author(s)
      T.Nishitani
    • Journal Title

      Studies in Phase Space Analysis with Applications to PEDs

      Volume: vol 84 Pages: 259-290

    • Peer Reviewed
  • [Journal Article] Note on lower bounds of energy growth for solutions to wave equations2012

    • Author(s)
      S.Doi, T.Nishitani, H.Ueda
    • Journal Title

      Osaka J. Math

      Volume: Vol 49 Pages: 1065-1085

    • Peer Reviewed
  • [Journal Article] Some well-posed Cauchy problem for second order hyperbolic equations2011

    • Author(s)
      F.Colombini, T.Nishitani, N.Oruu, L.Pernazza
    • Journal Title

      Osaka J. Math

      Volume: vol 48 Pages: 645-673

    • Peer Reviewed
  • [Journal Article] On the Cauchy problem for noneffectively hyperbolic operators, the Gevrey 3 well-posedness2011

    • Author(s)
      E.Bernardi, T.Nishitani
    • Journal Title

      J. Hyperbolic Differ. Equ

      Volume: vol 8 Pages: 615-650

    • Peer Reviewed
  • [Journal Article] On the Cauchy problem for noneffectively hyperbolic operators, the Gevrey 4 well-posedness2011

    • Author(s)
      E.Bernardi, T.Nishitani
    • Journal Title

      Kyoto J. Math

      Volume: Vol 51 Pages: 767-810

    • Peer Reviewed
  • [Journal Article] A note on the zero free region of the Stokes multipliers for second order ordinary differential equations with cubic polynomial coefficients2011

    • Author(s)
      T.Nishitani
    • Journal Title

      Funkcialaj Ekvacioj

      Volume: vol 54 Pages: 473-483

    • Peer Reviewed
  • [Presentation] Local and microlocal Cauchy problem for noneffectively hyperbolic operators2013

    • Author(s)
      T.Nishitani
    • Organizer
      9-th International ISSAC Congress
    • Place of Presentation
      クラコフ, ポーランド
    • Year and Date
      20130805-09
  • [Presentation] A remark on the local and microlocal Cauchy problem for noneffectively hyperbolic operators2013

    • Author(s)
      T.Nishitani
    • Organizer
      Linear and Nonlinear Hyperbolic Equations
    • Place of Presentation
      ピサ, イタリア
    • Year and Date
      20130701-04
  • [Presentation] 二次特性点を持つ偏微分方程式の初期値問題2013

    • Author(s)
      西谷 達雄
    • Organizer
      2013年日本数学会企画特別講演
    • Place of Presentation
      京都大学
    • Year and Date
      20130320-23
  • [Presentation] On the Cauchy Problem for noneffectively hyperbolic operators, a transition case2012

    • Author(s)
      T.Nishitani
    • Organizer
      Fourier Analysis and Pseudo-Differential Operators
    • Place of Presentation
      ヘルシンキ, フィンランド
    • Year and Date
      20120625-30
  • [Presentation] The Gevrey well-posedness of the Cauchy problem for noneffectively hyperbolic operators2011

    • Author(s)
      T.Nishitani
    • Organizer
      2011 NCTS Taiwan-Japan Workshop on PDEs and Geometric Analysis
    • Place of Presentation
      台北, 台湾
    • Year and Date
      2011-12-19
  • [Presentation] On the Cauchy problem for noneffectively hyperbolic operators, a transition case2011

    • Author(s)
      T.Nishitani
    • Organizer
      Perspectives in Phase Space Analysis on PDEs
    • Place of Presentation
      Bertinoro, イタリア
    • Year and Date
      2011-09-29
  • [Book] Hyperbolic Systems with Analytic Coefficients2014

    • Author(s)
      T.Nishitani
    • Publisher
      Springer
  • [Book] Cauchy problem for Noneffectively Hyperbolic Operators2013

    • Author(s)
      T.Nishitani
    • Publisher
      Mathematical Society of Japan

URL: 

Published: 2015-07-16  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi