• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2012 Fiscal Year Final Research Report

Research on graphs densely embedded on a closed surface

Research Project

  • PDF
Project/Area Number 23654041
Research Category

Grant-in-Aid for Challenging Exploratory Research

Allocation TypeMulti-year Fund
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionKeio University

Principal Investigator

OTA Katsuhiro  慶應義塾大学, 理工学部, 教授 (40213722)

Co-Investigator(Kenkyū-buntansha) ODA Yoshiaki  慶應義塾大学, 理工学部, 准教授 (90325043)
Project Period (FY) 2011 – 2012
Keywordsグラフ理論 / 三角形分割 / 閉曲面 / 染色数 / Hadwiger予想 / データベース
Research Abstract

We made a program generating all irreducible triangulations of a surface by applying vertex-splittings from a bouquet, one consisting of only one vertex. The list we obtained for the torus, it coincides with the list previously known. We also enumerate al

  • Research Products

    (5 results)

All 2013 2012 Other

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (3 results) Remarks (1 results)

  • [Journal Article] Hamiltonian cycles with all small even chords2012

    • Author(s)
      G. Chen, K. Ota, A. Saito and Y. Zhao
    • Journal Title

      Discrete Math

      Volume: 312 Pages: 1226-1240

    • Peer Reviewed
  • [Presentation] Clique minors, chromatic numbers for degree sequences in graphs2013

    • Author(s)
      太田克弘
    • Organizer
      日本数学会2013年度年会
    • Place of Presentation
      京都大学
    • Year and Date
      2013-03-20
  • [Presentation] Clique minors chromatic numbers for degree sequences2013

    • Author(s)
      太田克弘
    • Organizer
      Hakata Workshop 2013 -Combinatorics and its applications-
    • Place of Presentation
      九州大学(リファレンスビル博多駅東ビル)
    • Year and Date
      2013-01-26
  • [Presentation] Hajos number and chromatic number for near regular degree sequences2012

    • Author(s)
      挾間龍
    • Organizer
      応用数学合同研究集会
    • Place of Presentation
      龍谷大学
    • Year and Date
      2012-12-20
  • [Remarks] 頂点数,次数列・染色数毎のグラフの個数について,下記で公開している.

    • URL

      http://www.math.keio.ac.jp/~ohta/graphenum.html

URL: 

Published: 2014-08-29   Modified: 2014-10-02  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi