• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2014 Fiscal Year Final Research Report

Construction of path models for modules of critical level over affine Lie algebras

Research Project

  • PDF
Project/Area Number 23740003
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Algebra
Research InstitutionUniversity of Tsukuba

Principal Investigator

SAGAKI Daisuke  筑波大学, 数理物質系, 准教授 (40344866)

Project Period (FY) 2011-04-28 – 2015-03-31
Keywords量子アフィン代数 / アフィン・リー代数 / 結晶基底 / クリスタル / パス模型 / 量子 Bruhat グラフ / 半無限 Bruhat グラフ / エクストリーマル・ウェイト加群
Outline of Final Research Achievements

(1) We described level-zero Lakshmibai-Seshadri (LS) paths in terms of the (parabolic) quantum Bruhat graph. As an application, we described the degree function (= energy function) on the crystal of level-zero LS paths in terms of the weights of shortest directed paths in the quantum Bruhat graph.
(2) We introduced semi-infinite LS paths in terms of the semi-infinite Bruhat order (and semi-infinite Bruhat graph), which is closely related to irreducible highest weight representations of critical level, and then we proved that the crystal of semi-infinite LS paths is isomorphic, as a crystal, to the crystal basis of the extremal weight module.

Free Research Field

リー代数・量子群の組合せ論的表現論

URL: 

Published: 2016-06-03  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi