2016 Fiscal Year Final Research Report
Studies of fibred complex surfaces from diversified perspectives
Project/Area Number |
24244002
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Osaka University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
大渕 朗 徳島大学, その他の研究科, 教授 (10211111)
徳永 浩雄 首都大学東京, 理工学研究科, 教授 (30211395)
小木曽 啓示 東京大学, 数理(科)学研究科(研究院), 教授 (40224133)
臼井 三平 大阪大学, その他部局等, 名誉教授 (90117002)
足利 正 東北学院大学, 工学部, 教授 (90125203)
|
Project Period (FY) |
2012-05-31 – 2017-03-31
|
Keywords | 代数曲線束 / 堀川指数 / 自己同型 / 楕円曲面 / 対数的混合ホッジ構造 / 原始的双有理変換 |
Outline of Final Research Achievements |
Smooth projective algebraic surfaces with a fibration over a smooth projective curve are studied through the local analytic or topological invariants such as Horikawa index and local signature. We gave an explicit formula for them for non-hyperelliptic genus 3 fibrations. Also we studied plane curve arrangements through multiple sections of relative Jacobian varieties (of small genus) and produced new examples of Zariski pairs.
|
Free Research Field |
代数幾何学
|