• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Final Research Report

Statistical inference for stochastic differential equations and its applications to high frequency data analysis

Research Project

  • PDF
Project/Area Number 24300107
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypePartial Multi-year Fund
Section一般
Research Field Statistical science
Research InstitutionOsaka University

Principal Investigator

UCHIDA Masayuki  大阪大学, 基礎工学研究科, 教授 (70280526)

Co-Investigator(Kenkyū-buntansha) 吉田 朋広  東京大学, 大学院数理科学研究科, 教授 (90210707)
増田 弘毅  九州大学, 数理学研究院, 教授 (10380669)
深澤 正彰  大阪大学, 学内共同利用施設等, その他 (70506451)
Project Period (FY) 2012-04-01 – 2018-03-31
Keywords数理統計学 / 拡散過程 / Levy過程駆動型SDE / 疑似尤度解析 / 高頻度不規則観測 / セミマルチンゲール / 非整数ブラウン運動 / ボラティリティ
Outline of Final Research Achievements

We considered sampling problems for diffusion type processes. For parametric inference of stochastic differential equations based on high frequency data, it is important to obtain a quasi-maximum likelihood estimator (QMLE). In order to compute the QMLE efficiently, we proposed the hybrid type estimator by using advantages of both Bayes type estimation and the maximum likelihood type estimation. Moreover, the mathematical validity of the proposed estimator was shown and we confirmed that the proposed estimator had good performance by large scale numerical simulations. The proposed statistical method works well for not only diffusion type models including ergodic diffusions and small diffusions but general models. We also researched statistical inference for Levy driven stochastic differential equations and applications of statistical inference for stochastic differential equations to high frequency data analysis.

Free Research Field

統計科学

URL: 

Published: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi