• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2015 Fiscal Year Final Research Report

New development of representation theory of orders

Research Project

  • PDF
Project/Area Number 24340004
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypePartial Multi-year Fund
Section一般
Research Field Algebra
Research InstitutionNagoya University

Principal Investigator

IYAMA Osamu  名古屋大学, 多元数理科学研究科, 教授 (70347532)

Co-Investigator(Kenkyū-buntansha) TAKAHASHI Ryo  名古屋大学, 多元数理科学研究科, 准教授 (40447719)
Demonet Laurent  名古屋大学, 多元数理科学研究科, 特任准教授 (70646124)
MORI Izuru  静岡大学, 理学研究科, 教授 (50436903)
MINAMOTO Hiroyuki  大阪府立大学, 理学研究科, 准教授 (50527885)
Co-Investigator(Renkei-kenkyūsha) ITO Yukari  名古屋大学, 多元数理科学研究科, 准教授 (70285089)
NAKANISHI Tomoki  名古屋大学, 多元数理科学研究科, 教授 (80227842)
Project Period (FY) 2012-04-01 – 2016-03-31
Keywords高次元Auslander-Reiten理論 / τ傾理論 / 導来圏 / Cohen-Macaulay加群 / n無限表現型 / Geigle-Lenzing完全交叉環 / 団理論 / 非可換特異点解消
Outline of Final Research Achievements

I studied representation theory of orders mainly from a point of view of Auslander-Reiten theory and tilting theory. In addition to the following three major results, I gave a number of new results.
(1) We introduced tau-tilting theory, which completes classical tilting theory from a point of view of mutation. (2) We introduced n-representation infinite algebras, which are basic in higher dimensional Auslander-Reiten theory. (3) As a higher dimensional generalization of weighted projective lines, we introduced Geigle-Lenzing complete intersections and developed a basic theory.
These results were published in 22 papers (all of them were refereed). I gave 64 lectures in international or domestic conferences and seminars.

Free Research Field

整環の表現論

URL: 

Published: 2017-05-10  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi