2015 Fiscal Year Final Research Report
New development of representation theory of orders
Project/Area Number |
24340004
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Partial Multi-year Fund |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Nagoya University |
Principal Investigator |
IYAMA Osamu 名古屋大学, 多元数理科学研究科, 教授 (70347532)
|
Co-Investigator(Kenkyū-buntansha) |
TAKAHASHI Ryo 名古屋大学, 多元数理科学研究科, 准教授 (40447719)
Demonet Laurent 名古屋大学, 多元数理科学研究科, 特任准教授 (70646124)
MORI Izuru 静岡大学, 理学研究科, 教授 (50436903)
MINAMOTO Hiroyuki 大阪府立大学, 理学研究科, 准教授 (50527885)
|
Co-Investigator(Renkei-kenkyūsha) |
ITO Yukari 名古屋大学, 多元数理科学研究科, 准教授 (70285089)
NAKANISHI Tomoki 名古屋大学, 多元数理科学研究科, 教授 (80227842)
|
Project Period (FY) |
2012-04-01 – 2016-03-31
|
Keywords | 高次元Auslander-Reiten理論 / τ傾理論 / 導来圏 / Cohen-Macaulay加群 / n無限表現型 / Geigle-Lenzing完全交叉環 / 団理論 / 非可換特異点解消 |
Outline of Final Research Achievements |
I studied representation theory of orders mainly from a point of view of Auslander-Reiten theory and tilting theory. In addition to the following three major results, I gave a number of new results. (1) We introduced tau-tilting theory, which completes classical tilting theory from a point of view of mutation. (2) We introduced n-representation infinite algebras, which are basic in higher dimensional Auslander-Reiten theory. (3) As a higher dimensional generalization of weighted projective lines, we introduced Geigle-Lenzing complete intersections and developed a basic theory. These results were published in 22 papers (all of them were refereed). I gave 64 lectures in international or domestic conferences and seminars.
|
Free Research Field |
整環の表現論
|