• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2016 Fiscal Year Final Research Report

Geometry of moduli spaces for low dimensional manifolds

Research Project

  • PDF
Project/Area Number 24340009
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypePartial Multi-year Fund
Section一般
Research Field Geometry
Research InstitutionGakushuin University (2013-2016)
Tohoku University (2012)

Principal Investigator

Yamada Sumio  学習院大学, 理学部, 教授 (90396416)

Co-Investigator(Kenkyū-buntansha) 大鹿 健一  大阪大学, 理学(系)研究科(研究院), 教授 (70183225)
山口 孝男  京都大学, 理学(系)研究科(研究院), 教授 (00182444)
Research Collaborator PAPADOPOULOS Athanase  ストラスブルグ大学, 高等数学研究所, 研究ディレクター
Project Period (FY) 2012-04-01 – 2017-03-31
Keywords微分幾何学 / 双曲計量 / アインシュタイン計量 / 一般相対性理論 / タイヒミュラー空間 / CAT(0)空間 / 調和写像
Outline of Final Research Achievements

Before the 19th century, the objects of mathematical interests tended to be individual phenomenon, whether it was a curve, a function, or a shape. In contrast, in the context of modern mathematics, the importance of analyzing a FAMILY of objects concurrently was recognized, and systematically pursued. In this research project, we focused on the topic of Einstein metrics in the general relativity, and that of hyperbolic metrics defined on two dimensional manifolds. Consequently we obtained a new and complete understanding of the moduli space consisting of all the static solutions to the Einstein-Maxwell equations, and a new connection between the global aspects of the Teichmueller theory and convex geometry and convex analysis.

Free Research Field

幾何解析

URL: 

Published: 2018-03-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi