2016 Fiscal Year Final Research Report
Free boundary problems for flows with phase transitions consistent with thermodynamics based on maximal regularity theorem
Project/Area Number |
24340025
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Partial Multi-year Fund |
Section | 一般 |
Research Field |
Basic analysis
|
Research Institution | Kyoto University (2016) Shizuoka University (2012-2015) |
Principal Investigator |
Shimizu Senjo 京都大学, 人間・環境学研究科(研究院), 教授 (50273165)
|
Co-Investigator(Kenkyū-buntansha) |
田中 直樹 静岡大学, 理学部, 教授 (00207119)
菊地 光嗣 静岡大学, 工学部, 教授 (50195202)
小林 孝行 大阪大学, 基礎工学研究科, 教授 (50272133)
久保 隆徹 筑波大学, 数理物質科学研究科(系), 講師 (90424811)
|
Co-Investigator(Renkei-kenkyūsha) |
OGAWA Takayoshi 東北大学, 大学院理学研究科, 教授 (20224107)
KUMURA Hironori 静岡大学, 理学部, 准教授 (30283336)
|
Project Period (FY) |
2012-04-01 – 2017-03-31
|
Keywords | 数学解析 / Navier-Stokes方程式 / 自由境界問題 / 最大正則性 / 相転移 / 適切性 / 安定性 |
Outline of Final Research Achievements |
We study the basic model for incompressible two-phase flows with phase transitions consistent with thermodynamics in the case of constant but non-equal densities of the phases. We employ the direct mapping approach to transform the problem locally in time to a fixed domain. The proof of local well-posedness is based on maximal regularity of the underlying principal linearization and the contraction mapping principle. We extend our well-posedness result to general geometries, study the stability of the equilibria of the problem, and show that a solution which does not develop singularities exist globally, and if its limit set conatins a stable equilibrium it converge to this equilibrium as time goes to infinity.
|
Free Research Field |
偏微分方程式論
|