• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2014 Fiscal Year Final Research Report

Geometry of defomation spaces of Galois representations, p-adic Hodge theory and Langnands duality

Research Project

  • PDF
Project/Area Number 24540018
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionOsaka University

Principal Investigator

YASUDA Seidai  大阪大学, 理学(系)研究科(研究院), 准教授 (90346065)

Co-Investigator(Kenkyū-buntansha) KONDO Satoshi  東京大学, カブリ数物連携宇宙研究機構, 客員准科学研究員 (30372577)
TAGUCHI Yuichiro  九州大学, 数理学研究院, 准教授 (90231399)
HIRANOUCHI Toshiro  広島大学, 理学研究科, 助教 (30532551)
Co-Investigator(Renkei-kenkyūsha) TSUJI Takeshi  東京大学, 数理科学研究科, 教授 (40252530)
Project Period (FY) 2012-04-01 – 2015-03-31
Keywordsガロア表現 / p 進 Hodge 理論 / 多重ゼータ値
Outline of Final Research Achievements

The main researcher of this project and Go Yamashita computed the reductions modulo p of two dimensional crystalline representations except for a small number of exceptions when the difference of Hodge-Tate weights are less than or equal to (p-1)/2, and investgate a proof of comparison theorem of cohomologies of open varieties over p-adic fields and prepare fundamental tools to complete the proof. He, Kazuma Akagi, and Minoru Hirose proved that the p-adic multiple zeta values of weight k belongs to the k-th PD-ideal of pZ_p, and using this, gave a upper bound of the dimension of the Q-vector space of finite multiple zeta values inroduced by Kaneko and Zagier.

Free Research Field

整数論

URL: 

Published: 2016-06-03  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi