• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2014 Fiscal Year Final Research Report

Linear Systems on Algebraic Curves and its Applications

Research Project

  • PDF
Project/Area Number 24540042
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionThe University of Tokushima

Principal Investigator

OHBUCHI Akira  徳島大学, 大学院ソシオ・アーツ・アンド・サイエンス研究部, 教授 (10211111)

Co-Investigator(Kenkyū-buntansha) KATO Takao  山口大学, 理学部, 名誉教授 (10016157)
Co-Investigator(Renkei-kenkyūsha) KOMEDA Jiryo  神奈川工科大学, 工学部, 教授 (90162065)
HOMMA Masaaki  神奈川大学, 工学部, 教授 (80145523)
MIURA Kei  宇部工業高等専門学校, 一般科, 准教授 (50353321)
TAKAHASHI Takeshi  新潟大学, 工学部, 准教授 (60390431)
Project Period (FY) 2012-04-01 – 2015-03-31
Keywords代数幾何 / 代数曲線 / ブリル=ネーター理論 / 線形系 / 自己同型群
Outline of Final Research Achievements

研究成果の概要(英文):We prove that every automorphism of a smooth plane curve should be homology type, decsendent type and exceptional types. After this, we prove that automorphism is a homology type automorphism if and only if a Galois point type or a point defined by a composition of Galois covering and another covering. When a projection is a composition of Galois covering and another covering, its Galois closure can be embedded in a wreath product of some typical groups. According these resulte, we can construct a Galois closure of some covering map of a smooth plane curve whose Galois group contains a Btype Coxster group.

Free Research Field

数学・代数学

URL: 

Published: 2016-06-03  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi