2014 Fiscal Year Final Research Report
Linear Systems on Algebraic Curves and its Applications
Project/Area Number |
24540042
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | The University of Tokushima |
Principal Investigator |
OHBUCHI Akira 徳島大学, 大学院ソシオ・アーツ・アンド・サイエンス研究部, 教授 (10211111)
|
Co-Investigator(Kenkyū-buntansha) |
KATO Takao 山口大学, 理学部, 名誉教授 (10016157)
|
Co-Investigator(Renkei-kenkyūsha) |
KOMEDA Jiryo 神奈川工科大学, 工学部, 教授 (90162065)
HOMMA Masaaki 神奈川大学, 工学部, 教授 (80145523)
MIURA Kei 宇部工業高等専門学校, 一般科, 准教授 (50353321)
TAKAHASHI Takeshi 新潟大学, 工学部, 准教授 (60390431)
|
Project Period (FY) |
2012-04-01 – 2015-03-31
|
Keywords | 代数幾何 / 代数曲線 / ブリル=ネーター理論 / 線形系 / 自己同型群 |
Outline of Final Research Achievements |
研究成果の概要(英文):We prove that every automorphism of a smooth plane curve should be homology type, decsendent type and exceptional types. After this, we prove that automorphism is a homology type automorphism if and only if a Galois point type or a point defined by a composition of Galois covering and another covering. When a projection is a composition of Galois covering and another covering, its Galois closure can be embedded in a wreath product of some typical groups. According these resulte, we can construct a Galois closure of some covering map of a smooth plane curve whose Galois group contains a Btype Coxster group.
|
Free Research Field |
数学・代数学
|