2017 Fiscal Year Final Research Report
Geometry on concordance invariants of knots and links
Project/Area Number |
24540074
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | Nagoya University |
Principal Investigator |
Kawamura Tomomi 名古屋大学, 多元数理科学研究科, 准教授 (40348462)
|
Project Period (FY) |
2012-04-01 – 2018-03-31
|
Keywords | 結び目と絡み目 / 結び目と絡み目の射影図 / ラスムッセン不変量 / オジュバットとサボーの結び目不変量 / プレッツェル結び目 / ザイフェルト曲面 / 種数あるいはオイラー数 / 橋の架け替え |
Outline of Final Research Achievements |
A knot or link is a closed curve or its copies in the 3-dimensional space. An invariant of a knot or link is the number or something representing how complex it is. Many invariants have been constructed. In this research, we determine the Rasmussen invariant and the Ozsvath-Szabo invariant for certain pretzel knots. Furthermore we show a bridge-replacing move induced on knot diagrams is as useful in computing the Euler characteristic of a link, a kind of link invariants, as the genus of a knot, a kind of knot invariants.
|
Free Research Field |
結び目理論と低次元トポロジー
|