• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2016 Fiscal Year Final Research Report

Research of Ricci soliton in terms of Submanifold theory

Research Project

  • PDF
Project/Area Number 24540080
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionIbaraki University

Principal Investigator

Kimura Makoto  茨城大学, 理学部, 教授 (30186332)

Project Period (FY) 2012-04-01 – 2017-03-31
Keywordsガウス写像 / 実超曲面 / 四元数ケーラー構造 / ホップ超曲面 / Austere 部分多様体
Outline of Final Research Achievements

In differential geometry, Gauss map is very important to study geometric structure of surfaces and submanifolds. We define a Gauss map from real hypersurface in complex projective space to oriented complex 2-plane Grassmannian. We showed that if a real hypersurface is not Hopf, then the Gauss map is an immersion. If a real hypersurface is Hopf, then the image under the Gauss map is a Kahler submanifold and the Hopf hypersurface is the total space of a circle bundle over Kahler manifold.

Free Research Field

微分幾何学

URL: 

Published: 2018-03-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi