• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2015 Fiscal Year Final Research Report

spherical functions on real reductive groups and archimedean zeta integrals

Research Project

  • PDF
Project/Area Number 24740025
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Algebra
Research InstitutionSeikei University

Principal Investigator

Ishii Taku  成蹊大学, 理工学部, 准教授 (60406650)

Project Period (FY) 2012-04-01 – 2016-03-31
Keywords保型形式 / 保型L関数 / Whittaker関数 / アルキメデスゼータ積分
Outline of Final Research Achievements

The aim of our study is to establish analytic properties of automorphic L-functions via the integral representations method. We compute the archimedean zeta integrals which are the integral transforms of generalized spherical functions on real reductive Lie groups. As a consequence we prove the entireness, the location of possible poles and functional equations for some automorphic L-functions on GL(n) and GSp(2). Especially we show the coincidence of archimedean zeta integrals and the expected L-factors (product of Gamma functions) for the exterior square L-functions on GL(n) and the standard L-functions on GL(3)×GL(2).

Free Research Field

整数論

URL: 

Published: 2017-05-10  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi