2015 Fiscal Year Final Research Report
Study of the moduli of Galois representations of number fields and function fields
Project/Area Number |
25400016
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Kyushu University |
Principal Investigator |
Taguchi Yuichiro 九州大学, 数理(科)学研究科(研究院), 准教授 (90231399)
|
Co-Investigator(Kenkyū-buntansha) |
HATTORI Shin 九州大学, 大学院数理学研究院, 助教 (10451436)
|
Co-Investigator(Renkei-kenkyūsha) |
KURIHARA Masato 慶應大学, 理工学部, 教授 (40211221)
SAITO Takeshi 東京大学, 大学院数理科学研究科, 教授 (70201506)
TAMAGAWA Akio 京都大学, 数理解析研究所, 教授 (00243105)
YASUDA Seidai 大阪大学, 大学院理学研究科, 准教授 (90346065)
HIRANOUCHI Toshiro 広島大学, 大学院理学研究科, 助教 (30532551)
|
Project Period (FY) |
2013-04-01 – 2016-03-31
|
Keywords | ガロア表現 / モジュライ / 有限性 / 代数体 / 函数体 |
Outline of Final Research Achievements |
We have constructed a moduli scheme of Galois representations and studied its properties, and obtained some basic results. We have also obtained several related results, such as: (1) a vanishing theorem of the Galois-fixed subspace of a Galois representation of a rather general type of complete discrete valuation field (a generalization of a theorem of Imai) and its application to Iwasawa theory, (2) a result on the congruence of Galois representations and its application to non-existence theorems a la Rasmussen-Tamagawa, (3) proof of the fact that the Hecke field of a geometric Galois represntation is often (say, with density 1 primes, in certain cases) generated by the trace of the Frobenius for a single finite prime, (4) an upper bound of the number of the connected components of the Zariski closure of the image of a Galois representation.
|
Free Research Field |
数論
|