• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2015 Fiscal Year Final Research Report

Combinatorics of Schubert calculus and its application

Research Project

  • PDF
Project/Area Number 25400041
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionUniversity of Yamanashi (2015)
Okayama University (2013-2014)

Principal Investigator

NARUSE Hiroshi  山梨大学, 総合研究部, 教授 (20172596)

Co-Investigator(Renkei-kenkyūsha) IKEDA Takeshi  岡山理科大学, 理工学部, 教授 (40309539)
NAKAGAWA Masaki  岡山大学, 教育学研究科, 准教授 (50370036)
ISHIKAWA Masao  琉球大学, 教育学部, 教授 (40243373)
HAGIWARA Manabu  千葉大学, 理学研究科, 准教授 (80415728)
Project Period (FY) 2013-04-01 – 2016-03-31
Keywordsシューベルト・カルキュラス / 同変コホモロジー / 同変K理論 / 対称函数 / グラスマン多様体 / 一般コホモロジー / シューア函数 / 退化跡
Outline of Final Research Achievements

We defined good polynomial representative of torus equivariant Schubert class in K-theory of flag varieties of the classical groups. We also give combinatorial formula for them. As an application of equivariant Schubert calculus we give a proof of the hook formula, which gives the number of standard tableaux on a given shape of partition. We also give a generalization of the hook formula and its equivariant K-theory version. By alanogy with this formula we get a solution to the Casselman's problem related to the representation of p-adic algebraic groups using some techinques of Schubert calculus.

Free Research Field

代数学

URL: 

Published: 2017-05-10  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi