2015 Fiscal Year Final Research Report
Combinatorics of Schubert calculus and its application
Project/Area Number |
25400041
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | University of Yamanashi (2015) Okayama University (2013-2014) |
Principal Investigator |
|
Co-Investigator(Renkei-kenkyūsha) |
IKEDA Takeshi 岡山理科大学, 理工学部, 教授 (40309539)
NAKAGAWA Masaki 岡山大学, 教育学研究科, 准教授 (50370036)
ISHIKAWA Masao 琉球大学, 教育学部, 教授 (40243373)
HAGIWARA Manabu 千葉大学, 理学研究科, 准教授 (80415728)
|
Project Period (FY) |
2013-04-01 – 2016-03-31
|
Keywords | シューベルト・カルキュラス / 同変コホモロジー / 同変K理論 / 対称函数 / グラスマン多様体 / 一般コホモロジー / シューア函数 / 退化跡 |
Outline of Final Research Achievements |
We defined good polynomial representative of torus equivariant Schubert class in K-theory of flag varieties of the classical groups. We also give combinatorial formula for them. As an application of equivariant Schubert calculus we give a proof of the hook formula, which gives the number of standard tableaux on a given shape of partition. We also give a generalization of the hook formula and its equivariant K-theory version. By alanogy with this formula we get a solution to the Casselman's problem related to the representation of p-adic algebraic groups using some techinques of Schubert calculus.
|
Free Research Field |
代数学
|