• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2016 Fiscal Year Final Research Report

Research of Navier-Stokes equations in undounded domains by real analysis and the energy method

Research Project

  • PDF
Project/Area Number 25400185
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Mathematical analysis
Research InstitutionWaseda University

Principal Investigator

Yamazaki Masao  早稲田大学, 理工学術院, 教授 (20174659)

Co-Investigator(Renkei-kenkyūsha) SHIBATA Yoshihiro  早稲田大学, 理工学術院, 教授 (50114088)
KOZONO Hideo  早稲田大学, 理工学術院, 教授 (00195728)
TANAKA Kazunaga  早稲田大学, 理工学術院, 教授 (20188288)
Research Collaborator TAKAHASHI Go  早稲田大学, 基幹理工学研究科, 大学院生
FARWIG Reinhard  Darmstadt工科大学, 教授
GALDI Giovanni Paolo  Pittsburgh大学, 教授
Project Period (FY) 2013-04-01 – 2017-03-31
KeywordsNavier-Stokes 方程式 / 2次元 / 定常解 / 安定性 / 対称性
Outline of Final Research Achievements

For the Boussinesq equations, we established the unique existence of the solutions, and obtained the asymptotic behavior up to the second order.
Besides, for the stationary Navier-Stokes euqations on two-dimensional whole plane and exterior domains, we introduced a new assumption on the symmetry of domains, external force and the boundary value, and showed the existence of solutions which decay at infinity.
Further, under a weaker assumption on the symmetry, we showed the global asymptotic stability of the stationary solutions under arbitrary perturbations in the L2-space, together with the speed of decay measured by various norms.

Free Research Field

偏微分方程式

URL: 

Published: 2018-03-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi