• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2015 Fiscal Year Final Research Report

Study on Improvement of Snowfall Process in Cloud Resolving Model by Comparison with Ground-based Snow Particle Observation

Research Project

  • PDF
Project/Area Number 25400471
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Meteorology/Physical oceanography/Hydrology
Research InstitutionNational Research Institute for Earth Science and Disaster Prevention

Principal Investigator

Motoyoshi Hiroki  国立研究開発法人防災科学技術研究所, 観測・予測研究領域 雪氷防災研究センター, 主任研究員 (70571462)

Co-Investigator(Kenkyū-buntansha) Kato Teruyuki  気象庁気象研究所, 予報研究部, 室長 (70354438)
Co-Investigator(Renkei-kenkyūsha) Yamada Yoshinori  気象庁気象研究所, 予報研究部, 室長 (80553164)
Nakai Sento  国立研究開発法人防災科学技術研究所, 観測・予測研究領域 雪氷防災研究センター, 総括主任研究員 (20360365)
Ishizaka Masaaki  国立研究開発法人防災科学技術研究所, 観測・予測研究領域 雪氷防災研究センター, 研究参事 (50414412)
Project Period (FY) 2013-04-01 – 2016-03-31
Keywords雲解像モデル / 降雪粒子観測 / バルク法 / 卓越降水粒子 / モデル検証
Outline of Final Research Achievements

Weather forecast model to predict snowfall phenomena is expected as useful method for the measure against snow and ice disaster. In the cloud resolving model, which can be applied to the calculations at high resolution, various microphysical processes are incorporated in complex form. Then, the validation of cloud microphysics scheme by comparison with observation are required for its improvement.
In this study, we applied the methods for validation of the precipitation category and size distribution predicted by model comparing with precipitation fraction of each precipitation type classified by predominant hydrometeor, and precipitaion particle properties (size and fallspeed distribution). And we considered the factors of model underestimation of snow fall over the Japan-Sea coastal areas in middle Japan by model calculations at various resolution and sensitivity experiments and tried to modify the parameterisation for the production of graupels to improve the underestimation.

Free Research Field

気象学

URL: 

Published: 2017-05-10  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi