2016 Fiscal Year Final Research Report
Asymptotic Invariants of Higher Cohomology Groups and Applications to Complex Geometry
Project/Area Number |
25800051
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Geometry
|
Research Institution | Tohoku University (2015-2016) Kagoshima University (2013-2014) |
Principal Investigator |
|
Research Collaborator |
GONGYO Yoshinori 東京大学, 大学院数理科学研究科, 准教授 (70634210)
FUJINO Osamu 大阪大学, 大学院理学研究科, 教授 (60324711)
CAO Junyan Universite Paris 6, Institut de Mathematiques de Jussieu, Analyse complexe et geometrie
DEMAILLY Jean-Pierre Laboratoire de Mathematiques, Institut Fourier
|
Project Period (FY) |
2013-04-01 – 2017-03-31
|
Keywords | ケーラー幾何 / コホモロジー消滅定理 / 正則切断 / 特異計量 / 乗数イデアル層 / 調和積分論 / dbar, L2-理論 / 正値性 |
Outline of Final Research Achievements |
From the viewpoint of complex analytic geometry, I studied vanishing theorems of higher cohomology groups that naturally appear in algebraic geometry, and generalized them to (holomorphic) line bundles with singular hermitian metrics. Specifically, I established a Nadel type vanishing theorem for singular hermitian metrics with minimal singularities on big line bundles, and I obtained injectivity theorems to pseudo-effective line bundles by using multiplier ideal sheaves. Furthermore, I generalized them to deformations of Kaehler varieties by using higher direct images. In the processes, I developed techniques of singular hermitian metrics and multiplier ideal sheaves with transcendental singularities and techniques of L2 methods for dbar-equations and the theory of harmonic integrals.
|
Free Research Field |
複素幾何学
|