• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2016 Fiscal Year Final Research Report

Establishment of utilized predictive biomarkers of chemo sensitivity for ovarian cancer patients

Research Project

  • PDF
Project/Area Number 26253080
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field Obstetrics and gynecology
Research InstitutionKyoto University

Principal Investigator

Konishi Ikuo  京都大学, 医学研究科, 名誉教授 (90192062)

Co-Investigator(Kenkyū-buntansha) 森 誠一  公益財団法人がん研究会, その他部局等, 研究員 (10334814)
岡本 愛光  東京慈恵会医科大学, 医学部, 教授 (20204026)
山口 建  京都大学, 医学(系)研究科(研究院), 助教 (20378772)
松村 謙臣  京都大学, 医学(系)研究科(研究院), 准教授 (20452336)
安彦 郁  京都大学, 医学(系)研究科(研究院), 助教 (20508246)
松田 文彦  京都大学, 医学(系)研究科(研究院), 教授 (50212220)
山田 亮  京都大学, 医学(系)研究科(研究院), 教授 (50301106)
馬場 長  京都大学, 医学(系)研究科(研究院), 講師 (60508240)
濱西 潤三  京都大学, 医学(系)研究科(研究院), 助教 (80378736)
Project Period (FY) 2014-04-01 – 2017-03-31
Keywords卵巣癌 / 化学療法予測 / 個別化治療 / タキサン
Outline of Final Research Achievements

Prognoses of ovarian cancer have improved with the paclitaxel-carboplatin regimen. However, it remains unclear which cases exhibit a genuine benefit from taxane or from platinum. We aimed to predict taxane and platinum sensitivity via gene expression. Recently, The Cancer Genome Atlas data revealed four molecular subtypes of high-grade serous ovarian carcinoma (HGSOC) exhibiting distinct prognoses. We developed four novel HGSOC histopathological subtypes by focusing on tumor microenvironment and unraveled its mechanism. We discovered that the Mesenchymal Transition type which represents the “Mesenchymal” gene expression subtype could respond better to a dose dense taxane combined with carboplatin (ddTC) rather than a conventional taxane and carboplatin (TC) treatment. This new pathological classification reflecting HGSOC gene expression subtypes leads to individualization of chemotherapy treatments.

Free Research Field

婦人科腫瘍

URL: 

Published: 2018-03-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi