• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Final Research Report

Structure of compact-like abelian groups and realization of Markov density by a group topology

Research Project

  • PDF
Project/Area Number 26400091
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionEhime University

Principal Investigator

SHAKHMATOV Dmitri  愛媛大学, 理工学研究科(理学系), 教授 (90253294)

Project Period (FY) 2014-04-01 – 2018-03-31
Keywords位相群 / トポロジー / 代数学 / コンパクト / 連結性 / 小部分群 / 疑コンパクト
Outline of Final Research Achievements

We confirm 70 years old conjecture of Markov concerning the algebraic structure of connected groups in the class of abelian groups. Answering a question of Comfort and Gould, we completely describe the algebraic structure of abelian topological groups having the small subgroup generating property. We construct a countable free closed non-relexive subgroup in the product of continuum many integers. We introduce a notion of selectively sequentially pseudocompact space and study basic properties of this new subclass of pseudocompact spaces. Answering a question of Tkachenko, we prove that a weakly pseudocompact precompact group is pseudocompact.

Free Research Field

位相群論

URL: 

Published: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi