• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

New aspects of special functions

Research Project

  • PDF
Project/Area Number 26400122
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionChuo University

Principal Investigator

Takemura Kouichi  中央大学, 理工学部, 准教授 (10326069)

Research Collaborator Isojima Shin  
Igarashi Hikaru  
Kojima Kentaro  
Sato Tsukasa  
Project Period (FY) 2014-04-01 – 2019-03-31
Keywordsホインの微分方程式 / パンルヴェ方程式 / 超離散方程式 / q差分 / q-Heun equation / Ruijsenaars system / 可積分系 / 特殊関数
Outline of Final Research Achievements

Special functions are the important function as well as the elememtary functions. We obtained several results on Heun's differential equation, Painleve equations and their q-deformations.
We investigated the asymptotics of the solutions to the ultradiscrete Painleve II equation. We introduced q-Heun equation and its variants by degerenations of the Ruijsenaars-van Diejen system. We also obtained the results on the relationship with the q-Painleve equations and on the characterization of the variants of q-Heun equation in terms of the difference analogue of the regular singularity and the apparent singularity.

Free Research Field

特殊関数

Academic Significance and Societal Importance of the Research Achievements

超離散パンルヴェ第二方程式における成果は、q離散パンルヴェ方程式やパンルヴェ方程式の解に対する研究への応用につながると考えている。また、q-ホイン方程式の研究は、Luc Vinet, Alexei Zhedanov らの別の動機からの研究にも関係しており、今後の発展につながる可能性がある。
潜在的には、新たな特殊関数として物理学などへの応用が期待される。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi