• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Final Research Report

Special values of automorphic L-functions and periods

Research Project

  • PDF
Project/Area Number 26800017
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Algebra
Research InstitutionKyoto University (2015-2017)
Kyushu University (2014)

Principal Investigator

Yamana Shunsuke  京都大学, 白眉センター, 特定助教 (50633301)

Project Period (FY) 2014-04-01 – 2018-03-31
KeywordsL関数 / ヒルベルトモジュラー形式 / ジーゲルモジュラー形式 / 周期 / 池田リフティング / アイゼンシュタイン級数 / 格別表現 / テータ対応
Outline of Final Research Achievements

I developed a local theory of twisted symmetric square L-factors of representations of general linear groups and characterized its pole in terms of distinction by exceptional representations. I constructed Hilbert-Siegel cusp forms and Hilbert-Hermite cusp forms explicitly by generalizing Ikeda's construction of a lifting of elliptic cusp forms to a lifting of Hilbert cusp forms, and applied it to the basis problem and the theory of quadratic forms.
I constructed anti-cyclotomic p-adic spinor L-functions of paramodular Siegel cusp forms of degree 2 by using the Bessel period.
I computed Fourier coefficients of the non-central derivative of degree 4 Siegel Eisenstein series and relate it to the central derivative of degree 3 Siegel Eisenstein series.

Free Research Field

整数論

URL: 

Published: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi