• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1988 Fiscal Year Annual Research Report

偏微分方程式の解の特異性の位数の伝播についての研究

Research Project

Project/Area Number 63540115
Research InstitutionKyoto University

Principal Investigator

宮武 貞夫  京都大学, 理学部, 講師 (10025447)

Co-Investigator(Kenkyū-buntansha) 平井 武  京都大学, 理学部, 教授 (70025310)
楠 幸夫  京都大学, 理学部, 教授 (90025221)
池部 晃生  京都大学, 理学部, 教授 (00025280)
大鍛治 隆司  京都大学, 理学部, 助手 (20160426)
松本 和一郎  京都大学, 理学部, 助手 (40093314)
Keywordsリカッチ方程式 / 特異性の位数 / フーリエ積分作用素 / 正準変換
Research Abstract

q(x)が複素数値函数の場合に於て、Riccati equation w′=q(x)-w^2について解の挙動を調べた。考えるのはq(x)が負の値をとらない場合である。Re√<q(x)>>0とする時、q(x)の対数微分が、Re√<q(x)>に比べてある程度小さい場合には、x〓〔0,∞〕全体で-√<q(x)>に近い解が存在することを示している。これを定量的に定理の形で表わした。応用として(〓^2_x-a(x)〓^2_t)u=0,u(0,t)=g(t)の解について、x>0の方へのsingularityのorderの伝播及びsupportの伝播を論じている。第二の論文では、新たにsingularityのorderの超曲所的な性質について論じている。それは、singularityのorderは局所化する擬微分作用素の台にのみ依存して定まることを定理としてまとめた。この定理を応用すると、Fourier積分作用素によりsingularityのorderが、どの様に移っていくかを示すことが出来る。即ちuの(y,η)におけるsingularityのorder(OS)が、P_φuの(x,ξ)における、singularityのorderに及ぼす影響は次式で与えられる。
ここで、mはsymbol Pの次数であり、(y,η)→(x,ξ)はφによる正準変換による対応である。

  • Research Products

    (6 results)

All Other

All Publications (6 results)

  • [Publications] Sadao MIYATAKE: Journal of Mathematics of Kyoto University. 28. 13-36 (1988)

  • [Publications] Sadao MIYATAKE: Journal of Mathematics of Kyoto University. 29. (1989)

  • [Publications] Takashi OKAJI: J.Math.Kyoto Univ.28ー2. 311-322 (1988)

  • [Publications] Takashi OKAJI: J.Math.Kyoto Univ.28ー2. 323-334 (1988)

  • [Publications] Yukio KUSUNOKI: Holomorphic Functions and Moduli. 1. 209-213 (1988)

  • [Publications] Takeshi HIRAI: J.Math.Kyoto Univ.28. 695-749 (1988)

URL: 

Published: 1990-03-20   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi