• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

保型形式の算術性

Research Project

Project/Area Number 04J00268
Research Category

Grant-in-Aid for JSPS Fellows

Allocation TypeSingle-year Grants
Section国内
Research Field Algebra
Research InstitutionNagoya University

Principal Investigator

山内 淳生  名古屋大学, 大学院多元数理科学研究科, 特別研究員PD

Project Period (FY) 2004 – 2006
Project Status Completed (Fiscal Year 2006)
Budget Amount *help
¥3,400,000 (Direct Cost: ¥3,400,000)
Fiscal Year 2006: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2005: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2004: ¥1,200,000 (Direct Cost: ¥1,200,000)
Keywordsユニタリ群 / 四元数ユニタリ群 / 保型形式 / テータ函数 / ガロア作用 / 算術性 / 志村多様体 / ピーターソン内積
Research Abstract

今年度は、四元数unitary群Sp(1,1)上の保型形式について、その算術性について考察した。(主に、大阪市立大学COE研究員・成田宏秋と共同で研究を行った。)
この場合、この群に対応する対称領域は複素構造を持たず、しかも重さがベクトル値のものしか存在しない。そのため、これまでは、保型形式の存在が知られていたのみで、誰も具体例を知らなかった。
こういった状況で、本研究では、Sp(1,1)の(通常の虚二次体K上の)unitary群U(2,2)への埋め込みを考え、U(2,2)上の(ある特殊な)保型形式を引き戻すことによって、具体的なFourier展開を持ったSp(1,1)上の保型形式を構成することに成功した。こうして構成したSp(1,1)上の保型形式は、きわめて単純で分かりやすいFourier展開を持ち、自然に算術的なものとみなすことができる。また、異なる虚二次体から引き戻した保型形式どうしは、互いに線形独立となることも、明らかとなった。今後の課題は、果たしてこういったU(2,2)の保型形式の引き戻しによって、Sp(1,1)上の保型形式の空間を全て貼ることができるのかどうか、という点である。
また、Sp(1,1)の保型形式の内積を与える、いわゆるdoublingの式を作ることのできる、ある特殊なEisenstein級数を、Sp(2,2)上に構成することにも成功した。ただし、このEisenstein級数のFourier展開に現れる球函数はきわめて複雑であり、Sp(1,1)×Sp(1,1)に引き戻したとき、どのような保型形式となるのかは、今後の研究課題である。

Report

(3 results)
  • 2006 Annual Research Report
  • 2005 Annual Research Report
  • 2004 Annual Research Report
  • Research Products

    (1 results)

All Other

All Journal Article (1 results)

  • [Journal Article] Construction of a Galois action on modular forms for an arbitrary unitary group

    • Author(s)
      山内 淳生
    • Journal Title

      Journal of Mathematics of kyoto university (in press)

    • Related Report
      2005 Annual Research Report

URL: 

Published: 2004-04-01   Modified: 2024-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi