• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Algebraic curves through commutative semigroups and its application to toric varieties

Research Project

Project/Area Number 15540051
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionKanagawa Institute of Technology

Principal Investigator

KOMEDA Jiryo  Kanagawa Inst.Tech., Engineering, Prof., 工学部, 教授 (90162065)

Co-Investigator(Kenkyū-buntansha) OHBUCHI Akira  Tokushima Univ., Integrated Arts and Sciences, Prof., 総合科学部, 教授 (10211111)
Project Period (FY) 2003 – 2004
Project Status Completed (Fiscal Year 2004)
Budget Amount *help
¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2004: ¥500,000 (Direct Cost: ¥500,000)
Fiscal Year 2003: ¥600,000 (Direct Cost: ¥600,000)
KeywordsNumerical Semigroup / Algebraic Curve / Affine Toric Variety / Weierstrass Point / Weierstrass Semigroup / Weierstrass Pair / Double Covering of a Curve / Ramification Point / Numerical Semigroup / Affine Toric Variety / Algebraic Curve / Weierstrass Point / Weierstrass semigroup / Weierstrass Pair / Double Covering of a Curve / Ramification Point / Weierstrass Semigroup / Triple Covering of a Curve
Research Abstract

We are interested in the following two semigroups. One is the semigroup whose element is the order of a pole of a rational function with only one pole at a given fixed point on an algebraic curve. This semigroup is called the Weierstrass semigroup of the point. This semigroup becomes a numerical semigroup. Another is the Weierstrass semigroup of the pair of two points which is defined in a similar way to the case of one point. This research is devoted to the following :
1. Study on the existence or the construction of a pointed curve whose Weierstrass semigroup is a given numerical semigroup.
2. The description of the Weierstrass semigroup of the pair of ramification points of a covering of the projective line.
3. Research into affine toric varieties constructed from the Weierstrass semigroup of a point.
For the first case we construct a double covering of a hyperelliptic curve which is ramified over a Weierstrass point and investigate the Weierstrass semigroup of the ramification point. We can show that every 4-semigroup, i.e., a numerical semigroup whose minimum positive element is four, is derived from such a construction.
For the second case we describe the Weierstrass semigroup of the pair of two total ramification points on a cyclic covering of the projective line with prime degree.
The third case corresponds to the application to toric varieties. We study the affine toric varieties constructed from a 6-semigroup or a 7-semigroup generated by 4 elements.
In the future we will study the existence and the construction of a pointed curve whose Weierstrass semigroup is of genus 8 or 9 for the first case and a double covering of a hyperelliptic curve for the second case and 6-semigroups, 7-semigroups generated by 5 elements, 2-dimensional affine toric varieties for the third case.

Report

(3 results)
  • 2004 Annual Research Report   Final Research Report Summary
  • 2003 Annual Research Report
  • Research Products

    (23 results)

All 2005 2004 2003 Other

All Journal Article (20 results) Publications (3 results)

  • [Journal Article] The Weierstrass semigroup of a pair of Galois Weierstrass points with prime degree2005

    • Author(s)
      S.J.Kim, J.Komeda
    • Journal Title

      Bulletin of the Brazilian Mathematical Society 36

      Pages: 127-142

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Remarks on Weierstrass 6-semigroups2005

    • Author(s)
      J.Komeda
    • Journal Title

      KMITL Science Journal 5

      Pages: 181-189

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] On 7-semigroups generated by 4 elements2005

    • Author(s)
      J.Komeda
    • Journal Title

      神奈川工科大学研究報告B理工学編 29

      Pages: 103-111

    • NAID

      110006175628

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] The Weierstrass semigroup of a pair of Galois Weierstrass points with prime degree on a curve2005

    • Author(s)
      S.J.Kim, J.Komeda
    • Journal Title

      Bulletin of the Brazilian Mathematical Society

      Pages: 127-142

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] On 7-semigroups generated by 4 elements2005

    • Author(s)
      J.Komeda
    • Journal Title

      Research Reports of Kanagawa Institute of Technology B-29

      Pages: 103-111

    • NAID

      110006175628

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Remarks on Weierstrass 6-semigroups2005

    • Author(s)
      Jiryo Komeda
    • Journal Title

      KMITL Science Journal 5

      Pages: 181-189

    • Related Report
      2004 Annual Research Report
  • [Journal Article] On7-semigroups generated by 4 elements2005

    • Author(s)
      Jiryo Komeda
    • Journal Title

      Research Reports of Kanagawa Institute of Technology B-29

      Pages: 103-111

    • Related Report
      2004 Annual Research Report
  • [Journal Article] A generalization of a non-symmetric numerical semigroup generated by three elements2004

    • Author(s)
      J.Komeda
    • Journal Title

      数理解析研究所講究禄 1366

      Pages: 121-128

    • NAID

      110000507228

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Weierstrass points with first non-gap four on a double covering of a hyperelliptic curve2004

    • Author(s)
      J.Komeda, A.Ohbuchi
    • Journal Title

      Serdica Mathematical Journal 30

      Pages: 43-54

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] On 6-semigroups generated by 4 elements from which affine toric varieties can be constructed2004

    • Author(s)
      J.Komeda
    • Journal Title

      神奈川工科大学研究報告B理工学編 28

      Pages: 79-85

    • NAID

      110006175604

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] On the variety $W_d^r(C)$ whose dimension is at least d-3r-22004

    • Author(s)
      T.Kato, C.Keem, A.Ohbuchi
    • Journal Title

      Journal of Pure and Applied Algebra 69

      Pages: 319-333

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] On 6-semigroups generated by 4 elements from which affine toric varieties can be constructed2004

    • Author(s)
      J.Komeda
    • Journal Title

      Research Reports of Kanagawa Institute of Technology B-28

      Pages: 79-85

    • NAID

      110006175604

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Affine toric varieties whose specializations are the monomial curves of 6-semigroups2004

    • Author(s)
      J.Komeda
    • Journal Title

      Proceedings of the Seventh Symposium on Algebra, Languages and Computation

      Pages: 71-78

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Weierstrass Points with First Non-gap Four on a Double Covering of a Hyperelliptic Curve2004

    • Author(s)
      J.Komeda, A.Ohbuchi
    • Journal Title

      Serdica Mathematical Journal 30

      Pages: 43-54

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] A generalization of a non-symmetric numerical semigroup generated by three elements2004

    • Author(s)
      J.Komeda
    • Journal Title

      RIMS Kokyuroku 1366

      Pages: 121-128

    • NAID

      110000507228

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] A generalization of a non-symmetric numerical semigroup generated by three elements2004

    • Author(s)
      Jiryo Komeda
    • Journal Title

      数理解析研究所講究録 1336

      Pages: 121-128

    • NAID

      110000507228

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Weiersrass points with first non-gap four on a double covering of a hyperelliptic curve2004

    • Author(s)
      Jiryo Komeda, Akira Ohbuchi
    • Journal Title

      Serdica Mathematical Journal 30

      Pages: 43-54

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Affine toric varieties whose specializations are the monomial curves of 6-semigroups2004

    • Author(s)
      Jiryo Komeda
    • Journal Title

      Proceedings of the seventh symposium on Algebra, Languages and computation

      Pages: 71-78

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Variety of net of degree g-1 on smooth algebraic curves of low genus2003

    • Author(s)
      C.Keem, K.H.Cho, A.Ohbuchi
    • Journal Title

      Journal of Mathematical Society of Japan 55

      Pages: 591-616

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] The Weierstrass semigroup of a pair of Galois Weierstrass points with prime degree on a curve

    • Author(s)
      Jiryo Komeda, Seon Jeong Kim
    • Journal Title

      Bulletin of the Brazilian Mathematical Society (To appear)

    • Related Report
      2004 Annual Research Report
  • [Publications] Jiryo Komeda: "On 6-semigroups generated by 4 elements from which affine toric varieties can be constructed"Research Reports of Kanagawa Institute of Technogy. B-28. 79-85 (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] Jiryo Komeda: "Affine toric varieties whose specializations are the monomial curves of 6-semigroups"Proceedings of the Seventh Symposium on Algebra, Languages and Computation. (印刷中).

    • Related Report
      2003 Annual Research Report
  • [Publications] Jiryou Komeda, Akira Ohbuchi: "Weierstrass Points with First Non-gap Four on a Double Covering of a Hyperelliptic Curve"Serdica Mathematical Journal. (印刷中).

    • Related Report
      2003 Annual Research Report

URL: 

Published: 2003-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi