Evaluation of the complexity of solving LWE problems and establishment of setting method of secure parameters for lattice-based homomorphic encryption
Project/Area Number |
16H02830
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Information security
|
Research Institution | Kyushu University |
Principal Investigator |
Yasuda Masaya 九州大学, マス・フォア・インダストリ研究所, 准教授 (30536313)
|
Co-Investigator(Kenkyū-buntansha) |
脇 隼人 九州大学, マス・フォア・インダストリ研究所, 准教授 (00567597)
青野 良範 国立研究開発法人情報通信研究機構, サイバーセキュリティ研究所セキュリティ基盤研究室, 研究員 (50611125)
|
Project Period (FY) |
2016-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥14,040,000 (Direct Cost: ¥10,800,000、Indirect Cost: ¥3,240,000)
Fiscal Year 2019: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2018: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2017: ¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2016: ¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
|
Keywords | 格子暗号 / 最短ベクトル問題 / LWE / 準同型暗号 / 格子基底簡約 / 格子問題 / 耐量子計算機暗号 / BKZ / LWR / 整数計画法 / 耐量子暗号 / LWE問題 / 格子基底簡約アルゴリズム / 解読計算量 / 格子基底縮約 / 解読計算量評価 |
Outline of Final Research Achievements |
Lattice-based cryptography is a next-generation cryptography that is resistant to quantum computers and is also applicable to construction of high-functional cryptography such as homomorphic encryption. In particular, LWE-based schemes have excellent processing performance. The security of lattice-based cryptography is based on the computational hardness of lattice problems such as the shortest vector problem, but these problems are NP-hard and only known as asymptotic complexity. In this research, we had developed new algorithms to efficiently solve lattice problems such as the shortest vector and the LWE problems, and also evaluated their performance by experiments. Furthermore, we had implemented LWE-based homomorphic encryption schemes and demonstrated the performance in concrete applications such as secure matrix multiplications and secure statistical processing.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では,耐量子性と高機能性の両方を合わせ格子暗号の安全性評価を行うと共に,安全なパラメータにおける格子準同型暗号の実装性能を示した.今回得られた格子暗号に対する解読技術や暗号解析法は数多くの著名な国際会議や海外雑誌で出版され暗号分野で非常に高い評価を得ると共に,格子暗号の安全パラメータの抽出が可能となった.また,抽出した安全パラメータを用いて,格子準同型暗号の秘匿行列乗算や秘匿統計処理の具体的な応用先における性能評価を行った.本研究の性能評価により,プライバシー保護利活用技術として格子準同型暗号が実社会で利用可能か判断できるため,今後の格子暗号の標準化等の社会活動への貢献が期待できる.
|
Report
(5 results)
Research Products
(47 results)