• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of knots using local moves

Research Project

Project/Area Number 16K05162
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionOsaka Institute of Technology

Principal Investigator

Tsukamoto Tatsuya  大阪工業大学, 工学部, 教授 (10350480)

Project Period (FY) 2016-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords結び目理論 / 結び目 / プレッツェル結び目 / スライス結び目 / リボン結び目 / アレキサンダー多項式 / リボン融合 / 幾何学
Outline of Final Research Achievements

The purpose of this research is to know the structure of the set of whole knots in the 3-space and the topological property of each knot by using local moves. In the term of research (2016-2023), we worked on simple-ribbon fusions and pretzel knots and obtained several results. In general, it is hard to calculate the value of knot invariants and difference between the before and after knots when we apply local moves. However, we calculated the difference of Alexander polynomials for the case of simple-ribbon fusions, and the values of Alexander polynomial of pretzel knots whose parameter sequences are erasable. Moreover, using the results, we determined simple-ribbon knots whose crossing number is less than equal to ten, and simple-ribbon knots which are odd stranded even pretzel.

Academic Significance and Societal Importance of the Research Achievements

研究対象である結び目は3次元多様体や整数論といった数学の分野だけではなく、DNA研究のような数学外の分野とも深く関連している。実際、特に注力している局所変形の研究は組み換え酵素によるDNAへの作用に対応している。そのような中、本研究では単純リボン融合でほどける結び目のアレキサンダー多項式や、可約性をもつプレッツェル結び目のアレキサンダー多項式を求めた。さらにスライス・リボン予想という結び目理論における大きな予想の1つに対し、部分解を与えた。

Report

(9 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (18 results)

All 2023 2022 2021 2020 2019 2018 2016 Other

All Journal Article (8 results) (of which Peer Reviewed: 8 results,  Open Access: 2 results) Presentation (8 results) (of which Int'l Joint Research: 2 results,  Invited: 3 results) Remarks (1 results) Funded Workshop (1 results)

  • [Journal Article] On pretzel links which are concordant to the trivial link2023

    • Author(s)
      Nakanishi Yasutaka、Shibuya Tetsuo、Tsukamoto Tatsuya
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 32 Issue: 13 Pages: 2350083-2350083

    • DOI

      10.1142/s0218216523500839

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Characterizations of pretzel knots which are simple-ribbon2023

    • Author(s)
      SHIBUYA Tetsuo、TSUKAMOTO Tatsuya、UCHIDA Yoshiaki、ISHIKAWA Tsuneo
    • Journal Title

      Journal of the Mathematical Society of Japan

      Volume: 75 Issue: 4 Pages: 1431-1447

    • DOI

      10.2969/jmsj/89438943

    • ISSN
      0025-5645, 1881-1167, 1881-2333
    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Alexander polynomials of simple-ribbon knots2021

    • Author(s)
      K.Kishimoto, T.Shibuya, T.Tsukamoto, T.Ishikawa
    • Journal Title

      Osaka Journal of Mathematics

      Volume: 58 Pages: 41-57

    • NAID

      120006998401

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Simple-ribbon concordance of knots2020

    • Author(s)
      K.Kishimoto, T.Shibuya, T.Tsukamoto
    • Journal Title

      Kobe Journal of Mathematics

      Volume: 37 Pages: 1-17

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Sliceness of alternating pretzel knots and links2020

    • Author(s)
      K.Kishimoto, T.Shibuya, T.Tsukamoto
    • Journal Title

      Topology Appl.

      Volume: 282 Pages: 107317-107317

    • DOI

      10.1016/j.topol.2020.107317

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Simple-ribbon fusions and primeness of links2020

    • Author(s)
      T.Shibuya, T.Tsukamoto
    • Journal Title

      Mem. Osaka Inst. Tech.

      Volume: 65 Pages: 43-50

    • NAID

      120006881070

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Simple-ribbon fusions and primeness of knots2018

    • Author(s)
      Kengo Kishimoto, Tetsuo Shibuya, and Tatsuya Tsukamoto
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 27 Issue: 10 Pages: 1850057-1850057

    • DOI

      10.1142/s0218216518500578

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] A note on the slice-ribbon conjecture and simple-ribbon fusions2018

    • Author(s)
      Tetsuo Shibuya and Tatsuya Tsukamoto
    • Journal Title

      Memoirs of Osaka Institute of Technology

      Volume: 63 Pages: 7-13

    • NAID

      120006504188

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] On pretzel links which are concordant to trivial2023

    • Author(s)
      塚本 達也
    • Organizer
      拡大KOOKセミナー2023
    • Related Report
      2023 Annual Research Report
  • [Presentation] Characterizations of pretzel knots which are simple-ribbon2022

    • Author(s)
      塚本 達也
    • Organizer
      拡大KOOKセミナー2022
    • Related Report
      2022 Research-status Report
  • [Presentation] On Pretzel knots which are simple-ribbon2021

    • Author(s)
      塚本 達也
    • Organizer
      東京女子大学トポロジーセミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 結び目の単純リボン変形について2021

    • Author(s)
      塚本 達也
    • Organizer
      第68回トポロジーシンポジウム
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On simple-ribbon fusions2021

    • Author(s)
      塚本 達也
    • Organizer
      研究集会「結び目理論」
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Cobordism of pretzel knots and simple-ribbon fusions2019

    • Author(s)
      塚本達也
    • Organizer
      拡大KOOKセミナー2019
    • Related Report
      2019 Research-status Report
  • [Presentation] Alexander polynomials of Pretzel knots and simple-ribbon fusions2018

    • Author(s)
      Tatsuya Tsukamoto
    • Organizer
      拡大KOOKセミナー2018
    • Related Report
      2018 Research-status Report
  • [Presentation] Alexander polynomials of simple-ribbon knots2016

    • Author(s)
      Tatsuya Tsukamoto
    • Organizer
      Knots in Washington XLIII
    • Place of Presentation
      ジョージ・ワシントン大学,ワシントンDC(アメリカ)
    • Year and Date
      2016-12-11
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Remarks]

    • URL

      http://www.oit.ac.jp/ge/~tsukamoto/

    • Related Report
      2016 Research-status Report
  • [Funded Workshop] Volume Conjecture in Tokyo2018

    • Related Report
      2018 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi