• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Deevelopment of Geometric and Microlocal Analysis

Research Project

Project/Area Number 16K05221
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Mathematical analysis
Research InstitutionUniversity of the Ryukyus

Principal Investigator

CHIHARA Hiroyuki  琉球大学, 教育学部, 教授 (70273068)

Research Collaborator ONODERA Eiji  高知大学
Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2017: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2016: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywordsシーガル・バーグマン空間 / バーグマン変換 / エルミート展開 / バーグマン型変換 / トモグラフィー / テンソル・トモグラフィー / ラドン変換 / X線変換 / 測地的X線変換 / 正則エルミート関数 / 擬微分作用素 / フーリエ積分作用素 / 量子化 / 超局所解析 / 生成・消滅作用素 / エルミート関数系 / 分散型写像流 / 幾何解析
Outline of Final Research Achievements

The purpose of this project is to study the analysis of functions on manifolds and mappings between manifolds, and the functional analysis related to microlocal analysis. We have some results concerned with functional analysis on the Bargmann-type integral transforms on the Euclidean spaces. The most important results of this project is to obtain the necessary and sufficient conditions on holomorphic gaussian functions on the complex Euclidean spaces so that they have creation and annihilation operators satisfying the canonical commutation relations and become generators of the complete orthonormal system on the Segal-Bargmann space, which is a reproducing-kernel Hilbert space of entire functions.

Academic Significance and Societal Importance of the Research Achievements

本研究の成果は、これまでバーグマン型の積分変換やシーガル・バーグマン空間とは無関係に個別かつ具体的に研究されてきたいくつかの話題に関して、正統派と考えられるこれらの視点を導入し、従来よりも深い理解が得られた、あるいは、一般論を構築して従来の知見は特殊な具体例であることを示したものが多い。また、研究対象が、解析学だけでなく組合せ論の数え上げや特殊関数論などに一見無関係な話題と関連して発展する可能性がある。

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (9 results)

All 2019 2018 2017 2016

All Journal Article (3 results) (of which Peer Reviewed: 3 results) Presentation (4 results) (of which Int'l Joint Research: 2 results,  Invited: 4 results) Book (1 results) Funded Workshop (1 results)

  • [Journal Article] Holomorphic Hermite Functions in Segal-Bargmann Spaces2019

    • Author(s)
      Hiroyuki Chihara
    • Journal Title

      Complex Analysis and Operator Theory

      Volume: 13 Issue: 2 Pages: 351-374

    • DOI

      10.1007/s11785-018-0804-7

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Hermite expansions of some tempered distributions2018

    • Author(s)
      Hiroyuki Chihara, Takashi Furuya and Takumi Koshikawa
    • Journal Title

      Journal of Pseudo-Differential Operators and Applications

      Volume: 9 Issue: 1 Pages: 105-124

    • DOI

      10.1007/s11868-017-0211-2

    • Related Report
      2018 Annual Research Report 2017 Research-status Report 2016 Research-status Report
    • Peer Reviewed
  • [Journal Article] Holomorphic Hermite functions and ellipses2017

    • Author(s)
      Hiroyuki Chihara
    • Journal Title

      Integral Transforms and Special Functions

      Volume: 28 Issue: 8 Pages: 605-615

    • DOI

      10.1080/10652469.2017.1334057

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] Geometric analysis of dispersive flows2019

    • Author(s)
      Hiroyuki Chihara
    • Organizer
      The 14th Kagoshima Seminar on Algebra, Analysis and Geometry
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Geometric analysis of dispersive flows2018

    • Author(s)
      Hiroyuki Chihara
    • Organizer
      2018 Himeji Conference on Partial Differential Equations
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Bargmann-type transform associated with ellipses2016

    • Author(s)
      千原浩之
    • Organizer
      スペクトル理論セミナー
    • Place of Presentation
      学習院大学(東京都豊島区)
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] エルミート多項式とその周辺の話題2016

    • Author(s)
      千原浩之
    • Organizer
      数理科学セミナー
    • Place of Presentation
      高知大学(高知県高知市)
    • Related Report
      2016 Research-status Report
    • Invited
  • [Book] プリンストン解析学講義3 実解析2017

    • Author(s)
      エリアス・M・スタイン、ラミ・シャカルチ 著;新井仁之、杉本 充、髙木啓行、千原浩之 訳
    • Total Pages
      456
    • Publisher
      日本評論社
    • ISBN
      9784535608931
    • Related Report
      2017 Research-status Report
  • [Funded Workshop] 2018 Naha Workshop on Mathematical Analysis2018

    • Related Report
      2018 Annual Research Report

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi