Control and verification of completely-active-actuation centipede-like robots
Project/Area Number |
16K06181
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Intelligent mechanics/Mechanical systems
|
Research Institution | Nagoya University |
Principal Investigator |
|
Research Collaborator |
SUZUKI TATSUYA
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2016: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | 知能機械学 / ロボティクス / 多脚歩行 / 分散制御 / ムカデ型ロボット / 6脚移動ロボット / 接地点追従法 / 知能ロボティクス / 知能機械システム / 多脚移動ロボット / 知能機械 / 移動ロボット / 多脚移動 / 知能ロボティックス |
Outline of Final Research Achievements |
Centipede-like robots, which are consist of segments with a pair of legs, and six-legged robots were addressed in this research. These robots are expected to walk on even unknown complex environment, such as disaster areas. First, a sequential trajectory and contact-points generation method was developed for the centipede-like robots, and the follow-the-contact-point (FCP) gait control was improved considering the posture stability of the trunk for the six-legged robots. Next, a motion planning method based on simultaneous planning of contact points and the body trajectory was developed. Additionally, a timekeeper control, an adaptive control method using formal verification, was developed. Finally, a centipede-like robot with three-degree active inter-segment joints and a six-legged robot were developed, and the six-legged robot showed its high traversal performance of the robots equipping the proposed control methods in this research.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では災害地などで活用できる移動ロボットとして、特に6脚以上の多脚移動ロボットを開発した。これらのロボットは転倒しにくいため様々な不整地環境での活躍が期待できる。その一方で、脚数が多いことから制御が難しく、これまでに期待される性能を実現するまでに至っていない。本研究では、分散型歩行制御法である接地点追従法を基盤として、制御性能の向上、運動計画による知能化、環境への適応能力の向上を行なった。そして、ムカデ型ロボットと6脚移動ロボットの実機を開発し、実験を通してその高い不整地踏破能力を実証した。
|
Report
(4 results)
Research Products
(20 results)