• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Oxidative degradation of VOC using a non-thermal plasma reactor with twisted wire electrodes and honeycomb catalyst

Research Project

Project/Area Number 16K14471
Research Category

Grant-in-Aid for Challenging Exploratory Research

Allocation TypeMulti-year Fund
Research Field Reaction engineering/Process system
Research InstitutionKyoto University

Principal Investigator

Nakagawa Hiroyuki  京都大学, 工学研究科, 准教授 (40263115)

Research Collaborator Sakai Osamu  
Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords大気圧低温プラズマ反応器 / トルエン / ハニカム触媒 / 大気圧プラズマ / 酸化分解 / プラズマ / 有害化学物質 / 大気汚染防止・浄化
Outline of Final Research Achievements

A novel non-thermal plasma reactor with twisted wire electrodes is presented for efficient treatment technique of VOC. Spiral twisted wire electrodes are placed between inside and outside tubes to enhance the contact with gaseous species. It was found that energy density, which is energy input for unit volume of gas, determine the toluene degradation rate, inorganic gas yield, and generation of ozone. Efficiency of this reactor is also found to be much higher than those of previous works from the kinetic analysis. Oxidation of toluene and its degradation products could be successfully enhanced as well as the decomposition of ozone generated in the reactor by combining with a honeycomb catalyst set in the down-stream.

Academic Significance and Societal Importance of the Research Achievements

撚線を電極とすることで,1.7~2.3 kVという通常の電極よりも非常に低い電圧でプラズマ発生を可能とし,トルエンの酸化分解に成功した。これは,狭いギャップ長でありながら,ガス中のトルエン分子が発生したプラズマと効率よく接触できる構造であることを明らかにした。トルエンの分解特性は,処理ガス体積に対するエネルギー投入量というエネルギー密度によって整理できることを見出し,プラズマリアクターの設計指針を得た。また,螺旋状とすることで,エネルギー密度を自由に変えることができるため,電極の大型化も可能であり,新たな電極形状のプラズマリアクターとして有望である。

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi